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Abstract—The ability to provide temperature and water-vapor5
soundings under extreme weather conditions, such as hurricanes,6
could extend the coverage of space-based measurements to critical7
areas and provide information that could enhance outcomes of8
numerical weather prediction (NWP) models and other storm-9
track forecasting models, which, in turn, could have vital societal10
benefits. An NWP-independent 1D-VAR system has been devel-11
oped to carry out the simultaneous restitutions of atmospheric12
constituents and surface parameters in all weather conditions.13
This consistent treatment of all components that have an impact on14
the measurements allows an optimal information-content extrac-15
tion. This study focuses on the data from the NOAA-18 satellite16
(AMSUA and MHS sounders). The retrieval of the precipitating17
and nonprecipitating cloud parameters is done in a profile form,18
taking advantage of the natural correlations that do exist between19
the different parameters and across the vertical layers. Stability20
and the problem’s ill-posed nature are the two classical issues21
facing this type of retrieval. The use of empirically orthogonal-22
function decomposition leads to a dramatic stabilization of the23
problem. The main goal of this inversion system is to be able to24
retrieve independently, with a high-enough accuracy and under25
all conditions, the temperature and water-vapor profiles, which26
are still the two main prognostic variables in numerical weather27
forecast models. Validation of these parameters in different con-28
ditions is undertaken in this paper by comparing the case-by-case29
retrievals with GPS-dropsondes data and NWP analyses in and30
around a hurricane. High temporal and spatial variabilities of the31
atmosphere are shown to present a challenge to any attempt to val-32
idate the microwave remote-sensing retrievals in meteorologically33
active areas.34

Index Terms—Atmospheric sounding, data assimilation, drop-35
sonde, hurricane, microwave remote sensing, retrieval algorithm.36

I. INTRODUCTION37

PASSIVE microwave data measured in meteorologically38

active areas carry a wealth of information on the hydrom-39

eteors as well as on the temperature and water-vapor profiles.40

The assimilation of these space-based measurements, in either41

geophysical or radiometric form, could help the numerical42
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weather prediction (NWP) models in the analysis and forecast 43

stages by giving information about actual cloud and precipita- 44

tion, thus reducing the spin-up problem that usually impacts 45

the beginning of the forecast period [1]. The effect of the 46

hydrometeors on the brightness temperatures measured by the 47

microwave sensors may be negligible, significant, or something 48

in between depending on the spectral region considered and 49

on the type and intensity of the precipitation, making these 50

millimeter-wave sensors an ideal tool to probe the active areas. 51

This effect also depends, in certain cases, on the thermody- 52

namic temperature as this changes the dielectric properties and, 53

therefore, the absorption of the water, and on the atmospheric 54

water vapor, above and within the active area, as this has a 55

screening effect on the sensitivity to cloudy layers, all of which 56

advocate for having a consistent treatment of the atmospheric 57

profiles of temperature, water vapor, and hydrometeors. For 58

this purpose, a physical retrieval algorithm has been devel- 59

oped based on a radiance assimilation-type technique to invert 60

simultaneously the vertical profiles of temperature, water va- 61

por, nonprecipitating cloud, and liquid and frozen precipitating 62

hydrometeor parameters. The surface boundary layer is also 63

treated dynamically by including the surface-emissivity spec- 64

trum and the skin temperature as part of the control-parameter 65

vector. Optionally, the inversion of surface pressure could also 66

be triggered under certain conditions, otherwise obtained from 67

the background (fixed value). The information content in the ra- 68

diances is however limited. This is alleviated by performing the 69

retrieval in a mathematically reduced space which stabilizes the 70

retrieval significantly. However, stability of the retrieval does 71

not eliminate the null space: existence of multitude solutions 72

that fit equally well the radiances. In other words, including the 73

hydrometeors in the retrieved state vector increases the number 74

of degrees of freedom in the solution-finding process. It is 75

important to note that these degrees of freedom are also due to 76

the limited number of channels available. Adding hypothetical 77

channels would theoretically put additional constraints on the 78

solution finding and reduce these degrees of freedom. 79

This null space is the main reason why the stated goal of this 80

study is primarily the sounding of temperature and humidity 81

and, to a lesser degree, the surface sensing under extreme 82

weather events. The cloud and precipitating parameters are part 83

of the retrieval process mainly to absorb the effects they have 84

on the raw measurements. 85

The microwave sensors AMSU and MHS onboard 86

NOAA-18, which contain a combination of semiwindow and 87

sounding channels, will be used to test this retrieval algorithm. 88
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Note that the approach will sometimes be purposefully labeled89

assimilation and sometimes retrieval across the remainder90

of this paper. Assimilation of radiances amounts indeed to a91

retrieval, the retrieved parameters being the control parameters.92

The difference resides in the reliance on an existing analysis93

used as first guess and background to which the retrievals are94

constrained (or assimilated). But, it is important to state at this95

stage that no NWP information is used in this system (forecast96

or analysis). As will be described later, the background97

constraints will be built offline based on climatology. On98

the radiance level, all channels are used simultaneously in99

order to obtain a retrieval that satisfies all measurements100

together. This study should be viewed as an attempt to treat the101

whole geophysical state vector, including hydrometeors in a102

consistent fashion, but relying on the radiometric signal only, as103

we do not use the cloud/convective schemes either to generate104

hydrometeors from the temperature and the water vapor as105

other studies chose to do [5], [9], [27]. Nonprecipitating cloud106

and hydrometeors are thus treated from a pure radiometric-107

signal stand, just like the water vapor, temperature, emissivity,108

and skin temperature.109

The next section reviews the previous studies that dealt110

with assimilating rain-impacted microwave measurements ei-111

ther within an NWP context or not, followed by Section III112

describing the retrieval system used in this paper. The latter113

also briefly describes the different components used within114

the 1D-VAR system, including the forward radiative operator.115

Section IV focuses on describing the instrumental configura-116

tion, while Section V takes a look at the expected performances117

in a simulation setting. Section VI deals with describing the real118

data that we will be using, including the GPS-dropsondes, and119

lays out the validation results.120

II. REVIEW OF RAINY DATA ASSIMILATION121

AND RETRIEVAL122

Microwave-based assimilation of radiance measurements is123

not new; NWP centers have routinely or experimentally assim-124

ilated the clear-sky radiometric data as well as the microwave-125

retrieved products and have more recently directly assimilated126

the radiances measured in cloudy and precipitating conditions127

[5], [9], [30].128

Microwave measurements have also been used extensively129

for the retrieval of cloud, rain, and other precipitating parame-130

ters, either with relatively simple regression-based algorithms131

or with more physically based algorithms, similar to those132

used in NWP assimilation. Numerous sensors have been used133

for measuring cloud and precipitation: SSM/I, TRMM/TMI,134

AMSU/MHS, and AMSR-E are among them [13], [17], [48].135

Improvements have recently been made in this field of assim-136

ilating the cloud- and rain-impacted microwave radiances into137

NWP models as well as in the microwave remote sensing of138

cloud and hydrometeor parameters. These two problems are, in139

fact, similar in nature. The former (NWP assimilation) attempts140

to fit the impacted radiances by adjusting the temperature141

and water-vapor profiles and, along the way, generates the142

cloud/hydrometeor parameters (usually, by incorporating the143

cloud and convective schemes). The latter (hydrometeors re-144

trieval) is based also on finding the hydrometeors (or integrated 145

amount) that fit the radiances either through an Look-Up-Table 146

(LUT) search or through a variational technique and, along the 147

way, need to account, somehow, for the temperature and water- 148

vapor profiles. The physical inversion approach was found to 149

be superior in retrieving quantities (such as rainfall rate) using 150

the regression-based algorithms. One obvious reason is that 151

a physical retrieval can adapt dynamically to the particular 152

circumstance and is more likely to distinguish the precipitation 153

signal from the water vapor and temperature signals. We exclu- 154

sively focus on the physical approaches in this review. 155

A. Classification via Handling the Ill-Posed Nature 156

The inversion of cloudy/rainy radiances into the geophysical 157

space is a notoriously ill-posed problem. Several physical ap- 158

proaches have been tried in the past to add external constraints 159

and, therefore, stabilize the problem. Some approaches are 160

based on precomputation of hydrometeor profiles and their 161

corresponding radiances. The retrieval, thus, becomes a residual 162

minimization procedure which aims at finding the closest pre- 163

computed profile to match the measurements [17], [31], [44]. 164

Others rely on the NWP forecast outputs and associated cloud 165

and convective schemes to constrain the temperature and wa- 166

ter vapor as well as their relationship to the cloud and hy- 167

drometeor parameters [5], [9], [26], [27], [35]. As mentioned 168

earlier, the present study employs the empirically orthogonal- 169

function (EOF) decomposition technique to all vertical profiles, 170

including the hydrometeors as well as to the surface emissivity 171

vector, in order to constrain the inversion problem. The use of 172

background covariances, which are computed offline and inde- 173

pendently from the NWP forecast data, constitutes an additional 174

constraint to the problem, in addition to introducing physical 175

consistency between the retrieved parameters. 176

B. Bayesian Approach 177

Tassa et al. [44] developed a Bayesian algorithm to re- 178

trieve surface precipitation and cloud profiles over the ocean. 179

The training is done using a combination of outputs from a 180

mesoscale microphysical model and a 3-D radiative transfer 181

model (RTM). This method is similar to that adopted by 182

Evans et al. [11], Kummerow et al. [17], and Marzano et al. 183

[28]. In these algorithms, the retrieval is done by selecting, 184

among the precomputed profiles, those that minimize the resid- 185

uals with the measurements at hand. This strongly depends 186

on the cloud/radiation database and does not account for the 187

local variabilities of temperatures, water-vapor profiles, and 188

surface emissivity that could equally impact the brightness 189

temperatures. This method typically applies to the cloudy/rainy 190

conditions. The clear-sky case is screened out in the preprocess- 191

ing stage. Preclassification of precipitating events based on the 192

nature (stratiform/convective) or intensity (moderate/intense) 193

is usually performed. In [45], the important parameters that 194

do impact the brightness temperatures, but are not part of the 195

searched parameters, are used to generate a sensitivity matrix 196

which is used as an upper threshold limit to the residual 197

minimization process. These factors include size distribution, 198

density, shape, and phase for the hydrometeors. This matrix 199
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could also be used in variational analyses but was not in that200

study. Di Michele et al. [31] developed a Bayesian retrieval al-201

gorithm named Bayesian algorithm for microwave precipitation202

retrieval (BAMPR) that they compared to the Goddard profiling203

(GPROF) algorithm. Despite the similar approaches between204

the retrieval approaches, they found that their results differ, and205

those differences were attributed mainly to the training datasets206

and the cloud classification.207

C. 1D-VAR Approach208

Eyre [12] used a variational technique (labeled equivalently209

estimation-theory solution) for atmospheric sounding which210

he applied to the microwave and infrared data from TIROS211

Operational Vertical Sounder (TOVS). Besides temperature and212

moisture, cloud amount and top pressure were also retrieved.213

Surface pressure, temperature, and emissivity were also al-214

lowed to vary. A damping term was introduced in the solution215

for certain parameters to stabilize the retrieval process after an216

oscillatory behavior was noticed. This consisted of a diagonal217

matrix with unity values except for those parameters causing218

the instability, amounting to an effective reduction of their219

variances. Eyre [12] studied the effect of assuming a single220

layer cloud model by simulating the mixed clouds. He found221

that the system was able to find an effective cloud amount and222

vertical location to compensate for the mixed cloud nature. It is223

interesting to highlight that he reported also that the effects of224

the effective cloud-parameter retrieval had little impact on the225

temperature and humidity profiles.226

The standard use of 1D-VAR algorithms for the inversion227

of microwave data relies on using a background covariance228

matrix. This was shown to have limitations in the case of229

cloud and rain, as their variances will inevitably be large which230

would amount to an absence of constraint [37], [38]. In this231

latter study, a physical retrieval of moisture, cloud, wind speed,232

and rain was applied to SSM/I, and a spatial smoothing was233

adopted, attributing the horizontal variability exclusively to234

cloud structures.235

In their 1996 study, Phalippou et al. introduced a 1D-VAR236

algorithm for the clear and cloudy skies for an SSM/I237

configuration and highlighted its potential for the NWP. It238

later became operational at ECMWF. The integrated amount239

of cloud liquid was made to vary as a scaling factor for the240

retained vertical structure (the output of the ECMWF cloud241

scheme was assumed). This approach cannot easily be extended242

to sounding configurations as the cloud structure severely alters243

the vertical weighting functions [21]. Moreover, the absorption244

of the cloud is also dependent, through the dielectric constant,245

on the temperature of the cloudy layer [50] which places some246

importance on the location of the cloud within the vertical247

temperature profile. An error in the temperature location is248

likely to translate into an error in the resulting liquid total249

amount. Chevallier et al. [7] demonstrated the proof of concept250

of a 1D-VAR algorithm that could be used to assimilate251

clouds data. A fast RTM was developed along with its adjoint252

operator. It was applied to the advanced TOVS data. Deblonde253

and English [8] also used a variational algorithm for the cloudy254

but nonprecipitating conditions, similar to that of [36], except255

that an alternative method was tested where the total-water- 256

content profile was retrieved and, then, split into humidity and 257

liquid using an empirical function. A higher rate of divergence 258

was reported using this approach particularly in the clear-sky 259

cases, but improved temperature retrieval performances were 260

found using this method in cloudy skies. 261

Liu and Weng [21] more recently proposed a multistep 262

variational algorithm that retrieved temperature, moisture, and 263

cloud profiles in all-weather conditions. NCEP forecasts were 264

used as background, and regression-based algorithms were used 265

to produce the first guess for temperature and humidity profiles. 266

Surface wind and pressure were also taken from the NCEP- 267

forecast data. The integrated amount of cloud liquid was found 268

to be consistent with the original value but that the profile 269

presented differences due to the limited information content. To 270

constrain the problem and make the retrieval more stable, hy- 271

drometeor profiles were modeled in an oversimplified fashion. 272

The present study could be viewed as an upgrade to the study 273

of Liu and Weng where the stability and information-content 274

issues are handled through the EOF decomposition which also 275

removed the need to have a multistep approach. 276

D. 1D-VAR + Cloud Models Approach 277

Cloud models have started recently to become part of the 278

1D-VAR schemes to force consistency between the temper- 279

ature and humidity profiles on one hand and the cloud and 280

other hydrometeor profiles on the other hand. Direct measure- 281

ments of brightness temperatures in rainy conditions started 282

being assimilated, first, at ECMWF [5] where low-frequency 283

SSM/I channels were assimilated and, then, experimentally 284

at MSC [9]. The first step in these two stage approach 285

(1D-VAR + 4DVAR) consists of a 1D-VAR algorithm that 286

incorporates moist physical schemes in its forward operator, 287

which computes the hydrometeor profiles (cloud, ice, rain, and 288

snow) from the profiles of temperature and water vapor. 289

Moreau et al. [35] developed a 1D-VAR algorithm to re- 290

trieve the rain profiles with ECMWF model outputs used to 291

produce the first guess for temperature and humidity and a 292

cloud/convective scheme used to relate them to hydrometeors. 293

However, frozen hydrometeors were excluded in their exper- 294

iment which was mitigated by the choice of low-frequency 295

channels only. 296

Moreau et al. [34] compared the performances of two 297

1D-VAR-based retrievals of temperature and humidity profiles 298

from the passive TRMM and SSM/I data measured in rainy 299

areas. The first uses classically retrieved rainfall rate as input, 300

while the second uses directly the brightness temperatures. 301

Both use, besides an RTM, simplified convective and large- 302

scale condensation parameterization. They found that problems 303

with the convergence arise when background precipitation is 304

generated through convection and not by large-scale processes. 305

Bauer et al. [3] studied the performances of the cloud re- 306

trieval using the European Global Precipitation Mission config- 307

uration. They used the ECMWF short-term forecast profile of 308

temperature and humidity for the initialization of the first guess. 309

The hydrometeor first guess and background combines the 310

temperature and humidity profiles with cloud and convective 311
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model schemes, following a similar approach implemented in312

[35]. In their study, surface emissivity and temperature were313

fixed to climatologic values and not part of the control vector.314

The temperature and water vapor were not part of the control315

vector either, as the purpose was to assess the accuracy of hy-316

drometeor retrieval only. For this reason, the forward operator317

consisted of an RTM only (no convective or cloud scheme).318

Deblonde et al. [9] incorporated the ECMWF approach into the319

Canadian 1D-VAR assimilation system of the SSM/I retrieved320

rainfall rates or brightness temperatures. The resulting inte-321

grated water-vapor amount is assimilated in a 4DVAR assim-322

ilation scheme.323

E. On the Use of Cloud and Convective Schemes in 1D-VAR324

For it to work in a 1D-VAR context, the cloud and convective325

schemes employed need to be simplified and made less nonlin-326

ear which raises the question of their accuracy. Their adjoint327

model needs also to be developed and incorporated. This can328

be computed analytically (usually, for the simplified schemes)329

or by finite difference (usually, for the full moist physical330

schemes). The RTM would need to be coupled with the cloud331

schemes, and therefore, their uncertainties need to be accounted332

for. Deblonde et al. [9] questioned the usefulness of using a333

deep-convection scheme for the assimilation of cloudy/rainy334

radiances because of its high nonlinearity. The equivalent error335

was found to have a very large spread in cases where deep336

convection dominated. The inputs also need to be simplified337

as cloud models do normally depend also on time trends of338

radiation and vertical diffusion produced by the dynamical and339

other physical processes. In the same study, it was highlighted340

that using shallow convective scheme to produce cloud water341

content in the 1D-VAR actually degraded the comparison with342

the algorithm of Weng and Grody [46]. It was further shown343

that the deep convective scheme deteriorated the fit between the344

modeled and observed brightness temperatures, which shows345

that the cloud model schemes are far from being accurate,346

and their corresponding errors need to be accounted for in347

the 1D-VAR assimilation when used, along with the RTM348

errors. Contrary to RTMs, cloud models are very different and349

produce nonsimilar results in most cases. If these differences350

and impacts of linearization and simplifications are accounted351

for, the resulting errors that a 1D-VAR must use might amount352

to not constraining the retrieval. Moreover, cloud schemes have353

been documented to be sometimes locally biased, in need of354

tuning, and are by no means accurate in their relationship355

between the temperature (T) and humidity (Q) profiles on one356

hand and the cloud (C) and hydrometeor (H) profiles on the357

other. Their use carries a set of uncertainties that would need to358

be accounted for in the error covariance matrix, which would359

defeat, at least partially, the purpose of using them as a means360

to constraint the retrieval.361

III. RETRIEVAL/ASSIMILATION SYSTEM362

A. Suggested Approach363

In this paper, we have adopted an approach that relies ex-364

clusively on the direct-impact signatures of hydrometeors on365

the brightness temperatures. The natural correlations between 366

the cloud and hydrometeor parameters are included in the sys- 367

tem, through the development of a covariance matrix that puts 368

constraints on the independence of these parameters, between 369

themselves across the layers as well as between the parameters. 370

Separate retrievals treating parameters independently cannot, 371

for obvious reasons, ensure that these retrieved parameters will 372

be consistent, all at once, with the measured radiances [37], 373

[38]. For this reason, in the approach adopted, all channels, 374

including window and sounding channels, are used simulta- 375

neously in order to retrieve all parameters together. The use 376

of sounding channels was shown to present many advantages 377

in precipitation probing, including their lesser sensitivity to 378

surface emittance and their ability to slice the cloud profile 379

vertically [3]. 380

The effects of clouds could potentially improve the tempera- 381

ture retrieval of the cloudy layer rather than degrade it, due to 382

the increased absorption in that layer and, therefore, increased 383

sensitivity. Eyre [12] argues that retrievals that remove the 384

effects of clouds in preprocessing stages only degrade the 385

retrievals. This all-channel–all-parameter approach allows an 386

optimal extraction of information from the measurements. It is 387

also beneficial to use all channels together with sensitivity to a 388

wider range of precipitation amount [1] rather than a selective 389

channel set. The retrieval of cloud and hydrometeors in a profile 390

form presents some nice features, including avoiding in carry- 391

ing the cloud top and thickness in the state vector which usually 392

presents some instability, when these values cross the vertical- 393

level boundaries. It can also provide information about the mul- 394

tilayer nature of the cloud. Frozen and liquid profiles are both 395

retrieved in profile form, which means that at any given layer, it 396

is possible that we could get a mixture of these phases. This, of 397

course, would assume that we have enough radiometric signal 398

to distinguish them without ambiguity. With this approach: 399

1) Reliance on a moist physics model to relate the temper- 400

ature and water vapor to the cloud and hydrometeor profiles 401

is avoided, which allows 2) saving time by using only the 402

RTM to project the geophysical space into the radiance space; 403

3) derivatives are all computed through the RTM adjoint, and 404

no derivation of the cloud model is needed with its addi- 405

tional cost; 4) measurement errors, which are essential for the 406

1D-VAR, need only to be estimated for the instrumental noise 407

and the RTM uncertainty. Uncertainties associated with the 408

cloud physics modeling are therefore avoided; 5) dependence of 409

the resulting retrievals on NWP-specific information (forecast) 410

and/or convection scheme is also avoided. It is recognized 411

that the cause-to-effect type of relationship between the T 412

and Q profiles on one hand and the C and H profiles on 413

the other is no longer hard coded through a cloud scheme 414

coupled with the RTM such as in the studies aforementioned. 415

These constraints are however indirectly present, although 416

loosely, through the background covariance matrix to ensure 417

consistency, the same way that the temperature layers are 418

being constrained to produce a physically realistic tempera- 419

ture profile overall without a direct scheme that relates each 420

layer temperature to the others. This mechanism can take 421

advantage of known relationships between the hydrometeor 422

formation and the nonatmospheric variables. We emphasize 423
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that the retrieved cloud and hydrometeor profiles should be424

viewed as an effective product that, radiometrically, represent425

the effects of a conglomerate of parameters that have been426

reported to have significant impacts on brightness temperatures.427

These include the following:428

1) beam-filling effect;429

2) shape of the particles and droplets;430

3) their orientation;431

4) their density;432

5) volume mixture rate of liquid and frozen matters;433

6) particle size distribution;434

7) vertical distribution of all of the above [6];435

8) 3-D cloud and rain effects or nonvalidity of plane-parallel436

assumption;437

9) differences between the air temperature and the438

frozen/liquid water phases temperatures.439

Using these effective profiles in the retrieval is a result of440

the recognition that we cannot realistically claim to be able441

to retrieve accurately so many parameters with the available442

number of channels, without too heavily relying on the external443

data. We will call this handling of precipitation parameters, for444

the purpose of retrieving temperature and humidity, a precip-445

clearing procedure, as it effectively amounts to clearing the446

effects of these precipitation parameters from the retrievals447

of temperature and moisture profiles. We emphasize that this448

precip-clearing is highly nonlinear as it accounts for the effects449

of precipitation, not at the radiance level, but by accounting for450

the hydrometeors themselves as part of the retrieved state vector451

within the retrieval iterations.452

B. Description453

The 1D-VAR system used in this paper is labeled the mi-454

crowave integrated retrieval system (MIRS). The retrieval of the455

precipitating and nonprecipitating cloud parameters is done in a456

profile form as said before, along with the temperature and hu-457

midity profiles. A 100-layer pressure grid is used ranging from458

1050 to 0.1 mbar. Layers below the surface are disabled before459

the retrieval is triggered and do not play any role. The humidity,460

cloud, and hydrometeor parameters are actually retrieved in the461

natural logarithm space. This has the advantages of 1) avoiding462

the nonphysical negative values and 2) making their probability463

density functions (pdfs) more Gaussian, which is a necessary464

mathematical condition, as will be described later. To alleviate465

the limited information content available in the instruments466

at hand, the inversion is performed in a reduced eigenvalue467

space as mentioned before, which makes the retrieval process468

stable and mathematically consistent; the number of EOFs used469

in the retrieval is less or equal to the number of channels470

available.471

C. Mathematical Basis472

The mathematical basis of MIRS is a proven and widely used473

variational approach described in [39]. We will briefly review it474

here for the purpose of showing that it is valid in precipitating475

conditions as well. We will follow the probabilistic approach as476

it will highlight the only three important assumptions made for477

this type of retrievals, namely, the local linearity of the forward 478

problem, the Gaussian nature of both the geophysical state 479

vector and the errors associated with the forward model and 480

the instrument noise, and finally, that the measurements and the 481

forward operator are nonbiased to each other. It is important to 482

keep in mind that the variational, Bayesian, optimal estimation 483

theory, and maximum probability are all the same solutions (if 484

the same assumptions are made), although reached through dif- 485

ferent paths. The following will link the probabilistic approach 486

to the variational solution which seeks to minimize a cost 487

function. Intuitively, the retrieval problem amounts in finding 488

the geophysical vector X which maximizes the probability of 489

being able to simulate the measurement vector Y m using X as 490

an input and using Y as the forward operator. This translates 491

mathematically into maximizing P (X|Y m). 492

The Bayes theorem states that the joint probability P (X,Y ) 493

could be written as 494

P (X,Y ) = P (Y |X) × P (X) = P (X|Y ) × P (Y ).

Therefore, the retrieval problem amount to maximizing 495

P (X|Y m) =
P (Y m|X) × P (X)

P (Y m)
.

X is assumed to follow a Gaussian distribution 496

P (X) = exp
[
−1

2
(X − X0)T × B−1 × (X − X0)

]

where X0 and B are the mean vector (or background) and 497

covariance matrix of X , respectively. Ideally, the probability 498

P (Y m|X) is a Dirac-Delta function with a value of zero except 499

for X . Modeling errors and instrumental noises all influence 500

this probability. For simplicity, it is assumed that the pdf of 501

P (Y m|X) is also a Gaussian function with Y (X) as the mean 502

value (i.e., the errors of modeling and instrumental noise are 503

nonbiased), which could be written as 504

P (Y m|X) = exp
[
− 1

2
(Y m − Y (X))T

× E−1 × (Y m − Y (X))
]
.

E is the measurement and/or modeling error covari- 505

ance matrix. Maximizing P (X|Y m) is a minimization of 506

−log(P (X|Y m)) which could be computed from the previous 507

equations as 508

J(X) =
[
1
2
(X − X0)T × B−1 × (X − X0)

]

+
[
1
2

(Y m − Y (X))T × E−1 × (Y m − Y (X))
]

.

J(X) is called the cost function which we want to minimize. 509

The first right term Jb represents the penalty in departing from 510

the background value (a priori information), and the second 511

right term Jr represents the penalty in departing from the 512

measurements. The solution that minimizes this two-term cost 513
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function is sometimes referred to as a constrained solution.514

The minimization of this cost function is also the basis for515

the variational analysis retrieval. In theory, one could also find516

another optimal cost function for a non-Gaussian distribution517

and nonlinear problems. It is just not as a straightforward518

problem. The solution that minimizes this cost function is easily519

found by solving for520

∂J(X)
∂X

= J
′
(X) = 0

and assuming local linearity around X , which is generally a521

valid assumption if there is no discontinuity in the forward522

operator523

Y (X0) = Y (X) + K[X0 − X].

K, in this case, is the Jacobian or derivative of Y with respect524

to X . This results into the following departure-based solution:525

(X − X0) =∆X

=
{
(B−1 + KT E−1K)−1KT E−1

}
× [Y m − Y (X0)] .

If the previous equations are ingested into an iterative loop,526

each time assuming that the forward operator is linear, we end527

up with the following solution to the cost-function minimiza-528

tion process:529

∆Xn+1 =
{(

B−1 + KT
n E−1Kn

)−1
KT

n E−1
}

× [(Y m − Y (Xn)) + Kn∆Xn]

where n is the iteration index. The previous solution could be530

rewritten in another form after matrix manipulations531

∆Xn+1 =
{

BKT
n

(
KnBKT

n + E
)−1

}

× [(Y m − Y (Xn)) + Kn∆Xn] .

The latter is more efficient as it requires the inversion of only532

one matrix. At each iteration n, we compute the new optimal533

departure from the background given the derivatives as well as534

the covariance matrices. This is an iterative-based numerical535

solution that accommodates moderately nonlinear problems536

or/and parameters with moderately non-Gaussian distributions.537

This approach to the solution is generally labeled under the gen-538

eral term of physical retrieval and is also employed in the NWP539

assimilation schemes along with the horizontal and temporal540

constraints. The whole geophysical vector is retrieved as one541

entity, including the temperature, moisture, and hydrometeor542

atmospheric profiles as well as the skin surface temperature543

and emissivity vector, ensuring a consistent solution that fits544

the radiances.545

D. Forward Model 546

This type of inversion of cloudy/rainy radiances supposes 547

the use of a forward operator that can simulate the multiple 548

scattering effects due to ice, rain, snow, graupel, and cloud 549

liquid water at all microwave frequencies and generate the cor- 550

responding Jacobians for all atmospheric and surface parame- 551

ters. The forward operator used in this paper is the community 552

RTM (CRTM) developed at the Joint Center for Satellite Data 553

Assimilation (JCSDA) [47]. CRTM produces radiances as well 554

as Jacobi, for all geophysical parameters. It is valid in clear, 555

cloudy, and precipitating conditions. Derivatives are computed 556

using K-matrix developed by tangent linear and adjoint ap- 557

proaches. This is ideal for retrieval and assimilation purposes. 558

The different components of CRTM briefly are the optical-path- 559

transmittance (OPTRAN) fast atmospheric absorption model 560

[29], the NESDIS microwave emissivity model [20], and the 561

advanced doubling adding radiative transfer solution for the 562

multiple-scattering modeling [22]. 563

E. Covariance Matrix and Background 564

The covariance matrix plays an important role in variational 565

algorithms. Lopez [23] estimated an error covariance matrix 566

of cloud and rain from the French global model ARPEGE. 567

Chevallier et al. [7] simply defined an empirical covariance 568

matrix of clouds with large errors. Moreau et al. [35] used 569

the regular covariance matrix of temperature and humidity 570

which they convolved with moist convection and large-scale 571

condensation schemes to produce an ensemble of rain water 572

and cloud profiles. This covariance was computed for each 573

grid point. In this paper, the part of the covariance matrix B 574

related to temperature and humidity is based on a set of globally 575

distributed radiosondes (known as the NOAA-88 set) contain- 576

ing more than 8000 individual profiles, mostly over islands. 577

The impact of using a different covariance has not been tested, 578

but we expect that a more representative dataset could improve 579

the retrieval performances. The exact formula used to compute 580

these covariances is given as 581

σ2
ij =

1
N

N∑
i=1

N∑
j=1

(xi − xi) × (xj − xj)

where σij is one of the elements of the matrix corresponding to 582

row i and column j. N is the number of profiles used, and x is 583

the average value along the row or along the column. 584

The part related to the cloud parameters is, for practical 585

reasons, also built independently offline. These statistics are 586

generated from a multitude runs (three time-consecutive fields) 587

based on the fifth generation mesoscale model (MM5) simu- 588

lations, corresponding to hurricane Bonnie (1998), with 4-km 589

resolution and 23 vertical levels, which are extrapolated to the 590

internal pressure grid of MIRS (100 layers). 591

The ability of these runs to represent the hydrometeors’ 592

global variability is not fully established, but this is believed 593

to be accurate enough for the case of hurricanes and tropical 594

storms. Impact studies (not shown) were also performed and 595

showed that the system is able to reach convergence (therefore, 596



BOUKABARA et al.: PASSIVE MICROWAVE REMOTE SENSING OF EXTREME WEATHER EVENTS 7

a radiometric solution) in many conditions that are independent597

from the set that was used to generate these covariances. Given598

the high dimensionality of the covariance matrix, it is techni-599

cally not feasible to include the actual values of this matrix600

in this paper. The matrix file is however readily available to601

interested parties. The background is coming from the same602

climatology used for building the covariance matrix, not from603

the NWP forecasts. Because the climatology we used is neither604

geographically nor time varying, the background fields are sim-605

ply a mean value computed from a set of NOAA radiosondes in606

the case of the nonprecipitating parameters and from a number607

of MM5 runs for the precipitating parameters. These average608

background values are used everywhere, which means that the609

background field (to use data-assimilation terminology) is a610

constant field with only one value: the mean climatic value.611

F. EOF Decomposition612

The retrieval in MIRS is performed in EOF space through613

projections back and forth, at each iteration, between the614

original geophysical space and the reduced space. This method615

has been routinely used in operational centers as a standard616

transform approach of control variables [24]. It has also been617

used in the context of retrieval of trace gases, sounding, and618

surface properties [20], [33], [43], [49]. Applying it in the619

context of our 1D-VAR retrieval is therefore not very original620

except may be for its extension to cloud and precipitation621

profiles which is, to our knowledge, new. Only a limited number622

of eigenvectors/eigenvalues are kept in this reduced space. The623

selection of how many EOFs to use for each parameter is some-624

how subjective but depends on the number of channels available625

that are sensitive to that parameter. Other approaches exist626

such as in [36], which suggested an objective way of choosing627

which parameters will be included in the control parameters,628

using the ratio between the background covariance matrix629

and the a posteriori covariance (ratio of diagonal elements).630

This ratio, however, depends on the Jacobian which is only631

known at the end of the iterative process, unless the problem632

is purely linear (not the case when cloud and precipitation as633

well as the high-frequency channels are involved). Advantages634

of performing the retrieval in EOF space are the following:635

1) handling the strong natural correlations that sometimes636

exist between parameters which usually create a potential for637

instability (or oscillation) in the retrieval process (small pivot),638

which is reduced significantly by performing the retrieval in639

an orthogonal space and 2) time saving by manipulating and640

inverting smaller matrices. The projection in EOF space is641

performed by diagonalizing the a priori covariance matrix642

B × L = L × Θ

where L is the eigenvector matrix, which is also called the643

transformation matrix, and Θ is the eigenvalue diagonal matrix644

which contains the independent pieces of information.645

The retrieval could therefore be performed using the646

original matrices B, ∆X , Kn as stated before (retrieval647

in original space), or, alternatively, it could be done using the648

matrices/vectors Θ, ∆X , Kn (retrieval in reduced space). The649

transformations back and forth between the two spaces are done650

using the transformation matrix L. It is important to note that, at 651

this level, no errors are introduced in these transformations. It is 652

merely a matrix manipulation. However, the advantage of using 653

the EOF space is that the diagonalized covariance matrix and its 654

corresponding transformation matrix could be truncated to keep 655

only the most informative eigenvalues/eigenvectors. By doing 656

so, we are bound to retrieve only the most significant features 657

of the profile and leaving out the fine structures. How much 658

truncation depends on how much information the channels 659

contain. In the AMSU configuration, six EOFs are used for tem- 660

perature, four for humidity and surface emissivity, one for skin 661

temperature, one for nonprecipitating cloud, and two for both 662

rain and frozen precipitation (a total of 20). 663

G. Convergence Criterion and Other Important Details 664

Several criteria have been reported for deciding on the con- 665

vergence of variational methods, among which are the follow- 666

ing: 1) testing that the increment of the parameter values at 667

a given iteration is less than a certain threshold (usually, a 668

fraction of the associated error of that particular parameter); or 669

2) testing that the cost-function J(X) decrease is less than a 670

preset threshold; or 3) checking that the obtained geophysical 671

vector X at a given iteration produces radiances that fit the 672

measurements within the noise level impacting the radiances. 673

We have chosen the last criterion as it maximizes the radiance 674

signal extraction. A convergence criterion based on J(X), 675

while mathematically correct, would produce an output that 676

carries more ties to the background and, therefore, would be 677

more inclined to present artifacts due to it. The convergence 678

criterion adopted is when 679

ϕ2 =
⌊
(Y m − Y (X))T × E−1 × (Y m − Y (X))

⌋
≤ N

where N is the number of channels used for the retrieval 680

process. This mathematically means that the convergence is 681

declared reached if the residuals between the measurements and 682

the simulations at any given iteration are less or equal than one 683

standard deviation of the noise that is assumed in the radiances. 684

Note that fitting the radiances within the noise level is neces- 685

sary but not a sufficient condition. We should note here that the 686

convergence criteria do not alter the balance of weights given 687

to the radiances (or to the background) in the cost function that 688

the 1D-VAR minimizes. 689

The evolution of the humidity profile is monitored for super- 690

saturation in the iterative process. A maximum of 130% relative 691

humidity is allowed. Currently, it is set in an ad hoc fashion 692

at each step. This has the potential to steer nonlinearly the 693

convergence from its mathematical path and should, in general, 694

be avoided, but our experience has shown that this has not 695

increased the divergence rate in a significant way. 696

H. Rationale for Precip-Clearing 697

By precip-clearing, we mean the inclusion of cloud and 698

hydrometeor profiles in the retrieval state vector, not so much 699

for the sake of their retrieval (whose accuracy is hindered by 700

the significant null space as mentioned before) but to account 701
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for all their effects on the radiances, as well as to account for702

the effects of those related parameters that are not varied in703

the retrieval process and instead assumed constant inside the704

radiative transfer operator. This allows a more accurate retrieval705

of the other parameters, namely, the temperature and humidity706

profiles and the surface parameters. This is driven essentially707

by the limited number of channels available or, mathemati-708

cally speaking, the limited number of EOFs affordable, which709

translates into a lack of sensitivity to fine vertical structures.710

The integrated values of the cloud and hydrometeor parameters711

(roughly represented by one or two EOFs) are however deemed712

accurate from simulation runs.713

IV. INSTRUMENTAL CONFIGURATION714

In this paper, we will focus on the imaging/sounding chan-715

nels of the NOAA-18 microwave sensors AMSU and MHS.716

This platform was launched on May 21, 2005. The main717

purpose of the microwave sensors is the atmospheric sounding718

of temperature and moisture, but other products are being719

produced routinely that include the rain rate, ice water path,720

land surface temperature and emissivity, cloud liquid amount,721

and total precipitable water [13], [21]. AMSU has two modules722

(A-1 and A-2) with channels operating at centimeter and mil-723

limeter wavelengths corresponding to frequencies ranging from724

23.8 to 89 GHz and thirty scan positions per scanline. MHS on725

the other hand probes at millimetric frequencies between 89 and726

183 GHz with a higher spatial resolution (90 scan positions per727

scanline). AMSU and MHS channels are unpolarized at nadir728

and mix-polarized off-nadir. Both sensors have a cross-track729

swath, scanning angles between nadir and 48.33◦, correspond-730

ing to zenith angles reaching 58◦.731

V. ASSESSMENT OF THE PERFORMANCES IN SIMULATION732

This section deals with the simulation results aimed at as-733

sessing the performances of the retrieval system in clear and734

cloudy/rainy conditions. This assessment is hard to do using735

the real data due to the lack of certainty about the true measure736

of the geophysical state. Because the system is applied in all737

conditions, we want first to assess its performances in the clear-738

sky conditions. We, then, want to know what is the advantage739

(if any) of using a multiple-scattering model rather than a740

pure absorption model. These questions will be answered in741

the following two subsections for an individual profile. The742

AMSU/MHS configuration is used. The radiances are first sim-743

ulated using the forward model described in Section III-D, then744

the retrieval is applied after randomly impacting the radiances745

by a Gaussian noise whose standard deviation corresponds to746

the advertised NedT of the respective channels. These values747

were found to be consistent with those computed from the748

real data using the methodology of Mo [32]. In both cases,749

the simulated radiances were performed with a nadir-looking750

configuration. The background data used for these simulated751

retrievals are the same as used previously in Section III-E.752

A. Assessment in Nonprecipitating Conditions753

Fig. 1 shows the evolution of the retrieved parameters during754

the iterative process for a single profile where neither cloud755

Fig. 1. Evolution of a sample of the retrieved state vector during the iterative
process for an individual profile. The parameters monitored are (from top to
bottom) the convergence metric, the vertically integrated cloud amount, the
rain water path, the graupel-size ice amount, the skin temperature, the total
precipitable water, the atmospheric temperature in layer corresponding to a
pressure of 865 mbar, and, finally, the water-vapor mixing ratio in the same
layer. The solid line is the retrieved quantity, the dashed line represents the
truth, and the dotted-dashed line corresponds to the first guess and background
values.

nor precipitation was included. It shows that the retrieved pa- 756

rameters are all reaching the true value within three iterations. 757

The convergence metric is plotted in the top panel, showing 758

that the measurements were fitted within the noise level. The 759

first guess for the cloud and hydrometeors was chosen to be 760

nonzero, and the values reached in the final iteration were all 761

zero, as expected. This gives us confidence that the system will 762

produce cloud-free retrievals when applied to the truly clear- 763

sky cases. Even if this is shown for one particular profile only, it 764

was tested under other configurations, and similar results were 765

obtained (not shown here). 766

B. Assessment in Precipitating Conditions 767

Figs. 2 and 3 show the retrieval of one cloudy and rainy 768

profile from an MM5 output run using two approaches. The 769

radiances have been fully impacted by the extinction (absorp- 770

tion and scattering) effect of cloud, rain, and ice droplets during 771

the forward simulation. The first approach (Fig. 2) consisted 772
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Fig. 2. Evolution, iteration-by-iteration of (from top to bottom) convergence metric, vertical profiles of temperature, moisture, and cloud amount. This is a
cloudy/rainy sky (dashed lines represent true values), and the retrieval (represented by solid lines) was made assuming a purely absorbing RTM (multiple scattering
turned off). Dotted-dashed lines represent the first guess and background.

of assuming that only absorption is happening; therefore, only773

temperature, moisture, and nonprecipitating cloud amount are774

retrieved, and the multiple scattering is turned off in the forward775

operator of the 1D-VAR. The major effect this has on the776

retrieval is the significant amount of supersaturation that the777

water vapor is experiencing to compensate for the effect of778

scattering, up to 200% relative humidity. This phenomenon779

is consistent with the previous studies that actually took ad-780

vantage of this feature to estimate the amount of ice in the781

profile by looking at the water-vapor profile [19]. Note that782

this particular profile has perfectly converged within four it-783

erations. The same radiances are inverted in Fig. 3, but, this784

time, by turning the scattering on, the rain and the graupel-785

size ice are both retrieved simultaneously with temperature,786

moisture, and cloud liquid amount. We notice that the water-787

vapor supersaturation is much reduced. There is a sort of precip-788

clearing of the radiances that allows a better retrieval of the789

moisture profile. The temperature profile is not much altered.790

The apparent discontinuity in the original temperature profile791

is because it is a combination of an MM5-produced profile792

up to 100 mbar (so that temperature, cloud, and hydrometeors793

are consistent) and climatology above that level. Despite the794

nonphysical transition of the original temperature profile at795

100 mbar, which is simulated in the radiances, the retrieval is796

able to accommodate to a certain extent, given the shape of the 797

background that constrains its departures. This is an example of 798

how the variational technique is balancing a priori information 799

and radiance-provided information. We also notice the degree 800

of nullspace; the hydrometeors are not reaching the true values, 801

and yet, the retrieval has converged within three iterations. This 802

demonstrates that with the degrees of freedom at hand, one 803

needs more independent radiances to constrain the problem. As 804

a reminder, our primary goal here is to sound temperature and 805

moisture in the cloudy/precipitating conditions, not so much the 806

sounding of hydrometeors themselves. The integrated amounts, 807

however, are expected to be reasonably accurate. 808

VI. VALIDATION USING GPS-DROPSONDES 809

Microwave imaging and sounding data from the NOAA-18 810

satellite were used to validate the retrieval system described 811

previously in both clear cases as well as under extreme weather 812

conditions, in the eye and within the eyewall of hurricane 813

Dennis in the summer of 2005. This was done by compar- 814

ing the retrievals of temperature and humidity profiles to the 815

measurements made by GPS-dropsondes. Before the retrieval 816

is performed, the brightness temperatures of the two sensors 817

are collocated and corrected of any bias when compared to 818
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Fig. 3. Same as Fig. 2, except that the vertical profiles of rain and graupel-size ice are added. This is a cloudy/rainy sky (dashed lines represent true values), and
the retrieval (represented by solid lines) was made with the full RTM where multiple-scattering effects are accounted for. The supersaturation of water vapor is
much reduced compared to Fig. 2. The apparent discontinuity in the original temperature profiles is caused by their combination of the MM5-produced profiles
up to 100 mbar and climatology above that level.

the forward-model simulations. The collocation is done in two819

different ways: 1) An averaging is performed of 3 × 3 MHS820

footprints to fit the AMSU spatial coverage (low resolution)821

or 2) assume the AMSU footprint valid within all the subpixel822

MHS footprints (high resolution). In this latter case, the sub-823

pixel heterogeneity is computed from the MHS footprints and824

translated into the AMSU channels but only for those that are 825

sensitive to the same geophysical parameters, namely, channels 826

23.8, 31.4, 50.3, and 89 GHz. The bias removal is performed 827

by simulating the brightness temperatures over ocean using 828

the NCEP Global Data Assimilation System (GDAS) analyses 829

as inputs. These biases were found to be scan dependent. 830
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The instrumental/modeling error covariance matrix E is also831

built partly during this process by using the variances of the832

same comparisons. These variances are subjectively scaled833

down to account for the uncertainties in the GDAS inputs834

and collocation errors. The diagonal elements (in standard835

deviation, in Kelvin) of the modeling error matrix E for the836

AMSU+MHS channels (from #1 to #20) are the following: 1.9,837

1.7, 1.2, 0.6, 0.3, 0.2, 0.3, 0.4, 0.4, 0.3, 0.8, 0.0, 0.0, 0.0, 2.1,838

2.2, 1.4, 1.6, 1.3, and 1.1. Channels 12, 13, and 14 peak above839

the maximum altitude reported by GDAS, so the comparison840

to GDAS simulation is not terribly meaningful, therefore, the841

variances for these channels were deemed unreliable, and the842

channels were disabled. These modeling errors are used on top843

of the instrumental errors (NEDT values) which are computed844

exclusively from the raw AMSU/MHS Level-1B data, which845

are available from NOAA using the approach of [32]. For win-846

dow channels, modeling errors are dominant over instrumental847

errors. These values are slightly lower than those found in848

the previous studies [9], [36]. They allow, however, a stable849

convergence in most cases. Note that these modeling errors850

are computed over ocean in the clear-sky conditions. The same851

values are used over the cloudy/rainy conditions.852

A. Dropsondes Data853

It is critical that one gets a clear sense of how accurate the854

so-considered truth measurements are before interpreting any855

differences between them and the retrievals. In our case, mea-856

surements are made in the cloudy/rainy conditions (typically,857

during hurricanes and tropical storms) by high-velocity de-858

scending GPS-dropsondes. They were obtained from the Hur-859

ricane Research Division (HRD), Miami, FL, where they were860

quality-controlled using the Hurricane Analysis and Processing861

System. They operate at altitudes up to 24 km with a descent862

time of about 12 min. The measurements are made every half863

second which allows a high vertical resolution. Along with864

the temperature and moisture, the vertical wind-speed profile865

is also measured by using the GPS-based Doppler signal,866

which is down to 4–10 m above the surface. The validation of867

these dropsondes was assessed by a comparison with standard868

radiosondes, radars, buoys as well as by a human visualization869

of clouds for the saturation check. For a full description of these870

measurements, see [16]. In their study, the inherent accuracy of871

the temperature measurement was assessed to be 0.2 ◦C, but a872

lag error correction exceeding 1 ◦C was applied for layers above873

500 mbar. The humidity accuracy was assessed to be less than874

5%, but up to 15% dry bias correction was sometimes applied875

(S. Feuer, personal communication, 2006). As for the wind, an876

accuracy of 0.5–2 m/s was estimated.877

B. Limitations of the Validation in Extreme Weather Events878

Traditional approach in validating the retrievals by statis-879

tical comparison with ground-truth data collected around the880

measurement’s time/space location is not optimal in the case881

of hurricane conditions. The main reason is the fast-moving882

features involved. A category 2 storm, for instance, has an883

average forward speed of 30 mi/h (or 48 km/h), therefore, even884

Fig. 4. Impact of shifting the field of brightness temperature by three scanlines
(here 89-GHz channel) that is measured during July 2005 hurricane Dennis to
simulate the effect of collocation errors in time and space. The map represents
the difference of the two fields (shifted and nonshifted). In the scatterplot, the
colors are modulated by the heterogeneity of the original TBs field. The darker
the dot is, the smoother is the area around the measurement. Areas where the
field is very heterogeneous, (green-red dots on lower panel), have differences
exceeding 30 K.

if the storm features are all the same, a displacement caused 885

by a collocation criterion of 2 h would cause a 90-km shift 886

(∼6 scanlines of MHS). For illustration, Fig. 4 shows the effect 887

of a modest shift of three scanlines on a field of brightness 888

temperatures, assuming the geometry of the depicted storm did 889

not change between the shifted and the nonshifted fields. The 890

differences between the shifted and nonshifted fields reach very 891

high values that could make the comparison meaningless. 892

In reality, it is even worse: storm intensifies, fades down, 893

hydrometeor structures change, particles form/fall, the shift is 894

multidirectional, etc. Collocation errors are therefore expected 895

to be dominant in very active areas. Very strict criteria must 896

therefore be used for the validation of hydrometeor retrieval 897
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Fig. 5. Intravariability of dropsonde measurements in terms of temperature
and moisture profiles, which are made within an average of 10 min from each
other and within a radius of 10 km. Note that the descent time is roughly
12 min.

given their highly changing nature. Additionally, atmospheric898

temperature in the rain and cloud might be different from899

the air temperature. Sinkevich and Lawson [41] performed an900

assessment of the accuracy of temperature measurements in901

convective clouds and reported that temperature-excess amount902

between in-cloud and out-of-cloud areas depends on the stage903

of the life of the cloud and varied between 0.2 ◦C and up to904

8 ◦C over ocean. Over land, an even greater temperature excess905

was noticed. For all these reasons, there is a need to have an906

almost perfect collocation in these active conditions, in order907

for the comparison to be meaningful. Stringent time and space908

criteria must therefore be used, which obviously dramatically909

reduces the total number of coincident collocations. This, in910

turn, renders the empirical assessment statistically meaningless911

at best or practically unfeasible at worst. Note that the tight912

time and space collocation must be between coincident satel-913

lite measurements, hurricane events, and ground truth such as914

dropsondes.915

Fig. 6. Field of 157-GHz brightness temperatures taken during hurricane
Dennis on (top) July 6, 2005 and (bottom) July 8, 2005. Overlaid are the circles
centered around the location where the GPS-dropwindsonde was launched
from the aircraft. The horizontal color bar refers to the brightness-temperature
value. The vertical color bar represents the difference between the satellite-
measurement time and the sonde launch time. Collocations highlighted in the
upper and lower panels will serve as the validation in clear and precipitating
conditions, respectively.

Fig. 5 shows the measurements of four dropsondes that 916

were launched within the core of the hurricane (within and 917

around the eye) with an average of 10-min interval and within 918

10 km distance. Differences in temperature up to 4 K and 919

in moisture mixing ratio of up to 4 g/kg are noticed. These 920

differences are inherent to collocation–coregistration. Although 921

this is an almost perfect collocation between the dropsondes 922

themselves (no retrieval involved), because the hurricane active 923

features are moving fast, even a few minute interval and a few 924

kilometer distance can make the sensor (in this case, the ground 925

measurement) see a different signal. The descent time is by 926

itself a limiting factor. By the time the dropsonde descends, it 927

might be sampling the different parts of vertical profiles that are 928

significantly different. The verticality of the retrieved and the 929

ground-measured profiles is also an issue and adds to the overall 930

uncertainty. The dropsonde presents the potential of drifting, 931

while the retrieved profile’s verticality depends on the viewing 932

angle of the measurements where it was extracted from. If these 933

latter are nadir viewing, then the retrieved profile is vertical. If, 934

however, the channels are off-nadir viewing, then the retrieved 935

profiles are slant. This clearly puts an upper limit to the expec- 936

tations that one can have when comparing the retrievals with 937
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Fig. 7. Individual comparisons between dropsondes, MIRS retrievals, and GDAS. Note that all three have different pressure grids and different cloud tops. The
four dropsondes represented have different time differences. The collocations are outside the inner core of the hurricane, as shown in Fig. 6 (upper panel).

the dropsonde measurements. Another type of limitation that938

one should be aware of is what other studies called representa-939

tiveness error which relates to the fact that dropsonde measure-940

ments are point measurement and do not necessarily represent941

what the sensor is measuring within the field of view. This latter942

is around 15 km for MHS, at nadir, but more than 45 km wide at943

certain off-nadir viewing positions. Unfortunately, the number944

of dropsondes collocated with satellite measurements is limited,945

and therefore, the luxury of averaging within the footprint to946

mitigate the representativeness errors (or around the time of the947

measurement) cannot be afforded.948

C. Case-by-Case Validation949

Given the limitations discussed previously, and for the pur-950

pose of the validation, it was critical to find the as-perfect–as-951

possible collocation between the satellite measurements and the952

GPS-dropsondes. We focused on the hurricane Dennis which 953

occurred on July 2005. Fig. 6 shows two days of that hurricane 954

timeframe, July 6 and 8. The field of 157-GHz MHS brightness 955

temperature is shown because of its sensitivity to cloud, rain, 956

and ice. The dropsonde launch location is also highlighted by 957

circles. The color of those circles indicates how far (red) or how 958

close (dark) in time they are from when the closest satellite 959

measurement was taken. The upper panel contains a number 960

of decent dropsonde/satellite collocations (in space and time) 961

that appear free of any impact of rain or ice (seems to be 962

the same signal as the surface background). These will serve 963

for the validation of our retrievals in a clear-sky condition. 964

The lower panel on the other hand presents some interesting 965

cases of dropsondes in the eye and within the eyewall of the 966

hurricane (see close-up figure) that are very close in time to the 967

satellite measurements. These will serve for the validation of 968

the retrievals in the extreme conditions. 969
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Fig. 8. Same as the previous figure, except that the water-vapor retrievals are represented. Retrievals were performed at the higher spatial resolution (MHS).
Differences are higher when the retrieval is done at the lower resolution (not shown). No NWP external data were used for these retrievals.

D. Clear-Sky Conditions970

Figs. 7 and 8 show four individual dropsondes that were971

identified above as clear sky along with the MIRS retrievals972

and the GDAS analysis (included for reference). They corre-973

spond to temperature and water vapor, respectively. The time974

difference is highlighted in the different panels. For temper-975

ature, errors are typically less than 1 K with a maximum976

of 3 K in the low altitudes. Note that the retrieval goes up977

to 0.1 mbar, while the dropsonde for this particular aircraft978

goes only to 200 mbar and GDAS to 20 mbar. The rela-979

tively large differences in the lower altitude might signal that980

the brightness temperatures for the low-peaking and window981

channels have some local residual bias that is hard to remove982

using the global approach we used. The water-vapor compar-983

isons show a rather good agreement between the dropsonde984

measurements and the retrievals, except for the fine struc-985

tures that the dropsonde is able to report while the retrieval 986

is not detecting. This is not surprising given the vertically 987

broad weighting functions of the 183-GHz channels and the 988

horizontal size of the radiometric pixel which covers a much 989

wider area than that of the point measurements. The latter 990

are sensitive to subpixel horizontal variability. It is interesting 991

also to note that, as one might expect, differences between 992

the retrieval and dropsonde measurements tend to increase 993

with larger time differences (displayed in the squares inside 994

the plots). These retrievals were performed using the high- 995

resolution footprint matching described earlier. Tests were done 996

to see the impact of performing the retrievals in low resolution 997

and were found higher due to the larger representativeness error. 998

Note that in a relative sense, the differences are within the 999

10%–30% margin in the vertical region between the surface and 1000

500 mbar. 1001
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Fig. 9. Retrieval of graupel-size ice content using MIRS. Note that the
output of MIRS is an actual profile. The figure above represents the vertical
integration (which is performed in the postprocessing stage). Hurricane Dennis
2005 passing through the Cuba Island. Retrievals are done at MHS resolution
(roughly 20 km).

E. Hurricane Conditions1002

Fig. 9 shows the vertically integrated graupel-size ice amount1003

[Graupel-size ice water path (GWP)] computed from the1004

retrieved profile. This is shown as a qualitative validation.1005

Although the retrieval is done in profile form, the resulting1006

integrated value displays physically plausible features and val-1007

ues. The retrieval corresponds to the same Dennis hurricane1008

on July 8, 2005 (same descending orbit shown before). First,1009

where no activity is present (from the 157-GHz brightness1010

temperatures (TBs), the retrieval is reporting no ice or rain,1011

even if the first guess used is actually a nonzero profile (the1012

same used everywhere). This confirms the conclusion reached1013

in a simulation setting (see Section V) that the system is able1014

to produce zero amounts when the signal in the TBs indicates1015

so, even when starting from the nonzero first guesses. Second,1016

the large values of GWP are concentrated in the middle of the1017

active area and decreasing gradually at the edges. One can even1018

see that, in what seems to be the eye of the hurricane, the value1019

of the integrated ice amount is actually very small compared to1020

the surrounding pixels.1021

Figs. 10 and 11 show the comparison of MIRS retrievals1022

to a few selected sondes that were dropped within the eye1023

and eyewall of the hurricane. The ones closest in time and1024

space were selected (highlighted in Fig. 6, bottom). GDAS1025

is also represented for reference. These figures correspond to1026

temperature and moisture, respectively. Both time difference1027

and distance between the space-based measurement and the1028

dropsonde are shown on the plots. Note that the vertical extent1029

goes to 700 mbar only for this particular aircraft that dropped1030

the sondes. GDAS and MIRS are still reporting retrievals up1031

to 20 and 0.1 mbar. It is found that these comparisons show a1032

rather good agreement between MIRS and the dropsondes, at1033

least for temperature. The differences are indeed well within1034

the intravariability of the sonde measurements themselves de-1035

scribed previously. On top of the intravariability and the rep- 1036

resentativeness issues reported before, the vertical descent of 1037

the sonde seems to tend to drift horizontally more drastically 1038

within very active regions (see the blue curves on the figures). 1039

In contrast, the descent is almost vertical in clear-sky cases. 1040

Therefore, although the reported distance at launch location 1041

is reported to be 2.6 km for the first sonde for instance, we 1042

can see that when reaching the surface, the distance became 1043

around 10 km. Again, in fast-moving features like hurricanes, 1044

this factor could make a significant difference. For the closest 1045

collocation (less than 12 min and less than 3 km in distance), the 1046

difference in water vapor is actually also within the previously 1047

reported intravariability. When time and distance differences 1048

are larger, the moisture differences are larger. But, the er- 1049

rors of representativeness and the vertical drift of the sonde 1050

could at least, in part, explain the remaining differences. It is 1051

worth mentioning that NCEP GDAS does ingest the dropsonde 1052

measurements themselves within its assimilation cycle but not 1053

the rain-impacted AMSU/MHS radiances. It is interesting to 1054

notice in this case that GDAS analyses are exhibiting similar 1055

differences with the dropsondes than the MIRS retrieval does, 1056

although this latter is based solely on microwave radiances 1057

measured from AMSU and MHS. 1058

VII. CONCLUSION 1059

We have used cloud- and rain-impacted brightness temper- 1060

atures in a variational retrieval, using NOAA-18 AMSU and 1061

MHS sensors. This was made possible owing to the CRTM 1062

forward model, which produces both radiances in all-weather 1063

conditions and the corresponding Jacobi for all parameters, 1064

including the cloud and hydrometeor parameters. The CRTM 1065

is incorporated into a microwave-dedicated retrieval system 1066

at NOAA/NESDIS, which is called the MIRS. The MIRS 1067

methodology described here is based on treating, in a consistent 1068

fashion, all parameters that do impact the measurements. It is 1069

also independent from the NWP-related information. The ill- 1070

posed nature of the inversion is handled through the use of the 1071

eigenvalue decomposition technique which makes the inversion 1072

very stable, and a high convergence rate is obtained. It was 1073

shown, in an ideal simulation case, that the null space is a 1074

limiting factor. This translates into cases where the retrieval 1075

process reaches a solution that satisfies the measurements, but 1076

that is different from the original in terms of hydrometeor and 1077

cloud profiles. Because of this and the limited information 1078

content of the radiances, the aim of this retrieval was essentially 1079

to target the temperature and moisture profiles as well as the 1080

surface parameters in very active regions. The hydrometeor 1081

vertical amount profiles help account for the effects they and 1082

the other parameters not accounted for explicitly, produce 1083

on the measurements (precip-clearing). Improvement in the 1084

cloud and hydrometeor profiling is however expected, if tem- 1085

perature and moisture profiles are provided externally from 1086

accurate NWP forecasts for instance. Designing the retrieval 1087

of cloud and hydrometeors in profile form presents a number 1088

of advantages, including the avoidance to account explicitly 1089

for the cloud top pressure and the cloud thickness, which 1090

could, in certain cases, cause instability or oscillation. The 1091
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Fig. 10. Case-by-case comparison of temperature profile between 700 mbar and the surface, between (green line) MIRS retrievals, (red line) GDAS analyses,
and (black line with fine vertical structures) GPS-dropsonde measurements. The blue line on the left represents the profile of the dropsonde distance drift with
respect to the location of the closest satellite measurement. The collocations are within the inner core of the hurricane, as shown in Fig. 6 (lower panel).

designed system could also, in theory, give information about1092

the multilayer nature of the clouds and mixture of phases within1093

the cloud/precipitating layers, provided that enough informa-1094

tion in the radiances exists. The retrieval system is used in1095

clear, cloudy, and precipitating conditions. It was shown in1096

simulation and confirmed with the real data that the perfor-1097

mances, when applied to clear skies, are not degraded and that1098

the retrieval algorithm is able to reach a zero-amount solution1099

for all the cloud and hydrometeor parameters if the radiances1100

indicate so.1101

A validation was undertaken in both clear and extremely1102

active conditions by a controlled comparison to measurements1103

by the aircraft GPS-dropsondes, which are taken in the vicinity1104

of hurricane Dennis. We first showed that extreme care must be1105

exercised when attempting validation in these weather events,1106

as very contrasted atmospheric features are moving fast, and1107

therefore, any collocation error in space and/or time could have1108

enormous impact on the comparison between the retrievals 1109

and the ground-truth data. The collocation error, which is 1110

coupled with the inherent descent time of the dropsondes, thus 1111

sampling different parts of separate vertical profiles, would, in 1112

fact, be the dominant source of error. This led us to use very 1113

strict collocation criteria which, in turn, advocated doing the 1114

validation by individual comparisons rather than by computing 1115

statistical metrics. Another obvious major source of error is the 1116

representativeness error. If the same sensor is looking at differ- 1117

ent pieces of the atmosphere and this latter is very contrasted 1118

with moisture, rain, cloud, falling frozen precipitation, etc., the 1119

measurements could be very different. These differences are not 1120

due to any retrieval or calibration issues, but simply to inherent 1121

to 4-D variations of the atmosphere within the timeframe of 1122

the measurements and within the area sampled by these point 1123

measurements. Intravariability of the dropsondes themselves 1124

was assessed using four individual sondes dropped within 1125
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Fig. 11. Same as Fig. 10 except for the water-vapor profile.

10 min and a few kilometers from each other, which gave us1126

an estimate of the lower limit of the differences that we must1127

expect when validating the results.1128

We also hinted to the importance of the spatial resolution of1129

the measurements which plays a key role in these active areas.1130

To stabilize the sensor gain, the microwave radiometric mea-1131

surements need to be averaged within an integration time period1132

to reduce the noise level (NedT). This has the effect of reducing1133

the horizontal spatial resolution. It is however acknowledged1134

that this instrument noise is actually buried under other sources1135

of errors such as the modeling error. It is therefore preferable1136

from an assimilation or retrieval stand to have at least, in remote1137

sensing of highly contrasted events (such as hurricanes and1138

coastal boundaries), a higher horizontal spatial resolution with1139

a higher noise rather than a lower spatial resolution with a1140

reduced noise.1141

For the comparison between the MIRS retrieval and the1142

dropsondes, we focused on two days of hurricane Dennis, corre-1143

sponding to July 6 and 8, 2005. Results in the clear sky showed1144

that the differences in temperature and water vapor were mini-1145

mal. The finer vertical structures measured with the dropsondes1146

are, for obvious reasons, not expected to be picked by the re-1147

trieval given the broad weighting functions of the sounders. The1148

performances in the eye and the eye wall of the hurricane were 1149

shown to be largely within the intravariability of the reference 1150

measurements. These performances were comparable to those 1151

of GDAS analyses that ingested the dropsondes themselves. 1152

The MIRS-retrieved temperature and moisture profiles and the 1153

emissivity parameters, in active areas, are expected to produce 1154

positive impacts in the subsequent 4DVAR assimilations, the 1155

object of a future study. We, indeed, envision that our 1D- 1156

VAR, which considers the hydrometeor parameters as part of 1157

the retrieved vector instead of hooking it with a cloud model, 1158

could be ported into an assimilation system and used in the first 1159

part of a 1D-VAR+4DVAR assimilation process. 1160
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Abstract—The ability to provide temperature and water-vapor5
soundings under extreme weather conditions, such as hurricanes,6
could extend the coverage of space-based measurements to critical7
areas and provide information that could enhance outcomes of8
numerical weather prediction (NWP) models and other storm-9
track forecasting models, which, in turn, could have vital societal10
benefits. An NWP-independent 1D-VAR system has been devel-11
oped to carry out the simultaneous restitutions of atmospheric12
constituents and surface parameters in all weather conditions.13
This consistent treatment of all components that have an impact on14
the measurements allows an optimal information-content extrac-15
tion. This study focuses on the data from the NOAA-18 satellite16
(AMSUA and MHS sounders). The retrieval of the precipitating17
and nonprecipitating cloud parameters is done in a profile form,18
taking advantage of the natural correlations that do exist between19
the different parameters and across the vertical layers. Stability20
and the problem’s ill-posed nature are the two classical issues21
facing this type of retrieval. The use of empirically orthogonal-22
function decomposition leads to a dramatic stabilization of the23
problem. The main goal of this inversion system is to be able to24
retrieve independently, with a high-enough accuracy and under25
all conditions, the temperature and water-vapor profiles, which26
are still the two main prognostic variables in numerical weather27
forecast models. Validation of these parameters in different con-28
ditions is undertaken in this paper by comparing the case-by-case29
retrievals with GPS-dropsondes data and NWP analyses in and30
around a hurricane. High temporal and spatial variabilities of the31
atmosphere are shown to present a challenge to any attempt to val-32
idate the microwave remote-sensing retrievals in meteorologically33
active areas.34

Index Terms—Atmospheric sounding, data assimilation, drop-35
sonde, hurricane, microwave remote sensing, retrieval algorithm.36

I. INTRODUCTION37

PASSIVE microwave data measured in meteorologically38

active areas carry a wealth of information on the hydrom-39

eteors as well as on the temperature and water-vapor profiles.40

The assimilation of these space-based measurements, in either41

geophysical or radiometric form, could help the numerical42
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weather prediction (NWP) models in the analysis and forecast 43

stages by giving information about actual cloud and precipita- 44

tion, thus reducing the spin-up problem that usually impacts 45

the beginning of the forecast period [1]. The effect of the 46

hydrometeors on the brightness temperatures measured by the 47

microwave sensors may be negligible, significant, or something 48

in between depending on the spectral region considered and 49

on the type and intensity of the precipitation, making these 50

millimeter-wave sensors an ideal tool to probe the active areas. 51

This effect also depends, in certain cases, on the thermody- 52

namic temperature as this changes the dielectric properties and, 53

therefore, the absorption of the water, and on the atmospheric 54

water vapor, above and within the active area, as this has a 55

screening effect on the sensitivity to cloudy layers, all of which 56

advocate for having a consistent treatment of the atmospheric 57

profiles of temperature, water vapor, and hydrometeors. For 58

this purpose, a physical retrieval algorithm has been devel- 59

oped based on a radiance assimilation-type technique to invert 60

simultaneously the vertical profiles of temperature, water va- 61

por, nonprecipitating cloud, and liquid and frozen precipitating 62

hydrometeor parameters. The surface boundary layer is also 63

treated dynamically by including the surface-emissivity spec- 64

trum and the skin temperature as part of the control-parameter 65

vector. Optionally, the inversion of surface pressure could also 66

be triggered under certain conditions, otherwise obtained from 67

the background (fixed value). The information content in the ra- 68

diances is however limited. This is alleviated by performing the 69

retrieval in a mathematically reduced space which stabilizes the 70

retrieval significantly. However, stability of the retrieval does 71

not eliminate the null space: existence of multitude solutions 72

that fit equally well the radiances. In other words, including the 73

hydrometeors in the retrieved state vector increases the number 74

of degrees of freedom in the solution-finding process. It is 75

important to note that these degrees of freedom are also due to 76

the limited number of channels available. Adding hypothetical 77

channels would theoretically put additional constraints on the 78

solution finding and reduce these degrees of freedom. 79

This null space is the main reason why the stated goal of this 80

study is primarily the sounding of temperature and humidity 81

and, to a lesser degree, the surface sensing under extreme 82

weather events. The cloud and precipitating parameters are part 83

of the retrieval process mainly to absorb the effects they have 84

on the raw measurements. 85

The microwave sensors AMSU and MHS onboard 86

NOAA-18, which contain a combination of semiwindow and 87

sounding channels, will be used to test this retrieval algorithm. 88

0196-2892/$25.00 © 2007 IEEE
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Note that the approach will sometimes be purposefully labeled89

assimilation and sometimes retrieval across the remainder90

of this paper. Assimilation of radiances amounts indeed to a91

retrieval, the retrieved parameters being the control parameters.92

The difference resides in the reliance on an existing analysis93

used as first guess and background to which the retrievals are94

constrained (or assimilated). But, it is important to state at this95

stage that no NWP information is used in this system (forecast96

or analysis). As will be described later, the background97

constraints will be built offline based on climatology. On98

the radiance level, all channels are used simultaneously in99

order to obtain a retrieval that satisfies all measurements100

together. This study should be viewed as an attempt to treat the101

whole geophysical state vector, including hydrometeors in a102

consistent fashion, but relying on the radiometric signal only, as103

we do not use the cloud/convective schemes either to generate104

hydrometeors from the temperature and the water vapor as105

other studies chose to do [5], [9], [27]. Nonprecipitating cloud106

and hydrometeors are thus treated from a pure radiometric-107

signal stand, just like the water vapor, temperature, emissivity,108

and skin temperature.109

The next section reviews the previous studies that dealt110

with assimilating rain-impacted microwave measurements ei-111

ther within an NWP context or not, followed by Section III112

describing the retrieval system used in this paper. The latter113

also briefly describes the different components used within114

the 1D-VAR system, including the forward radiative operator.115

Section IV focuses on describing the instrumental configura-116

tion, while Section V takes a look at the expected performances117

in a simulation setting. Section VI deals with describing the real118

data that we will be using, including the GPS-dropsondes, and119

lays out the validation results.120

II. REVIEW OF RAINY DATA ASSIMILATION121

AND RETRIEVAL122

Microwave-based assimilation of radiance measurements is123

not new; NWP centers have routinely or experimentally assim-124

ilated the clear-sky radiometric data as well as the microwave-125

retrieved products and have more recently directly assimilated126

the radiances measured in cloudy and precipitating conditions127

[5], [9], [30].128

Microwave measurements have also been used extensively129

for the retrieval of cloud, rain, and other precipitating parame-130

ters, either with relatively simple regression-based algorithms131

or with more physically based algorithms, similar to those132

used in NWP assimilation. Numerous sensors have been used133

for measuring cloud and precipitation: SSM/I, TRMM/TMI,134

AMSU/MHS, and AMSR-E are among them [13], [17], [48].135

Improvements have recently been made in this field of assim-136

ilating the cloud- and rain-impacted microwave radiances into137

NWP models as well as in the microwave remote sensing of138

cloud and hydrometeor parameters. These two problems are, in139

fact, similar in nature. The former (NWP assimilation) attempts140

to fit the impacted radiances by adjusting the temperature141

and water-vapor profiles and, along the way, generates the142

cloud/hydrometeor parameters (usually, by incorporating the143

cloud and convective schemes). The latter (hydrometeors re-144

trieval) is based also on finding the hydrometeors (or integrated 145

amount) that fit the radiances either through an Look-Up-Table 146

(LUT) search or through a variational technique and, along the 147

way, need to account, somehow, for the temperature and water- 148

vapor profiles. The physical inversion approach was found to 149

be superior in retrieving quantities (such as rainfall rate) using 150

the regression-based algorithms. One obvious reason is that 151

a physical retrieval can adapt dynamically to the particular 152

circumstance and is more likely to distinguish the precipitation 153

signal from the water vapor and temperature signals. We exclu- 154

sively focus on the physical approaches in this review. 155

A. Classification via Handling the Ill-Posed Nature 156

The inversion of cloudy/rainy radiances into the geophysical 157

space is a notoriously ill-posed problem. Several physical ap- 158

proaches have been tried in the past to add external constraints 159

and, therefore, stabilize the problem. Some approaches are 160

based on precomputation of hydrometeor profiles and their 161

corresponding radiances. The retrieval, thus, becomes a residual 162

minimization procedure which aims at finding the closest pre- 163

computed profile to match the measurements [17], [31], [44]. 164

Others rely on the NWP forecast outputs and associated cloud 165

and convective schemes to constrain the temperature and wa- 166

ter vapor as well as their relationship to the cloud and hy- 167

drometeor parameters [5], [9], [26], [27], [35]. As mentioned 168

earlier, the present study employs the empirically orthogonal- 169

function (EOF) decomposition technique to all vertical profiles, 170

including the hydrometeors as well as to the surface emissivity 171

vector, in order to constrain the inversion problem. The use of 172

background covariances, which are computed offline and inde- 173

pendently from the NWP forecast data, constitutes an additional 174

constraint to the problem, in addition to introducing physical 175

consistency between the retrieved parameters. 176

B. Bayesian Approach 177

Tassa et al. [44] developed a Bayesian algorithm to re- 178

trieve surface precipitation and cloud profiles over the ocean. 179

The training is done using a combination of outputs from a 180

mesoscale microphysical model and a 3-D radiative transfer 181

model (RTM). This method is similar to that adopted by 182

Evans et al. [11], Kummerow et al. [17], and Marzano et al. 183

[28]. In these algorithms, the retrieval is done by selecting, 184

among the precomputed profiles, those that minimize the resid- 185

uals with the measurements at hand. This strongly depends 186

on the cloud/radiation database and does not account for the 187

local variabilities of temperatures, water-vapor profiles, and 188

surface emissivity that could equally impact the brightness 189

temperatures. This method typically applies to the cloudy/rainy 190

conditions. The clear-sky case is screened out in the preprocess- 191

ing stage. Preclassification of precipitating events based on the 192

nature (stratiform/convective) or intensity (moderate/intense) 193

is usually performed. In [45], the important parameters that 194

do impact the brightness temperatures, but are not part of the 195

searched parameters, are used to generate a sensitivity matrix 196

which is used as an upper threshold limit to the residual 197

minimization process. These factors include size distribution, 198

density, shape, and phase for the hydrometeors. This matrix 199
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could also be used in variational analyses but was not in that200

study. Di Michele et al. [31] developed a Bayesian retrieval al-201

gorithm named Bayesian algorithm for microwave precipitation202

retrieval (BAMPR) that they compared to the Goddard profiling203

(GPROF) algorithm. Despite the similar approaches between204

the retrieval approaches, they found that their results differ, and205

those differences were attributed mainly to the training datasets206

and the cloud classification.207

C. 1D-VAR Approach208

Eyre [12] used a variational technique (labeled equivalently209

estimation-theory solution) for atmospheric sounding which210

he applied to the microwave and infrared data from TIROS211

Operational Vertical Sounder (TOVS). Besides temperature and212

moisture, cloud amount and top pressure were also retrieved.213

Surface pressure, temperature, and emissivity were also al-214

lowed to vary. A damping term was introduced in the solution215

for certain parameters to stabilize the retrieval process after an216

oscillatory behavior was noticed. This consisted of a diagonal217

matrix with unity values except for those parameters causing218

the instability, amounting to an effective reduction of their219

variances. Eyre [12] studied the effect of assuming a single220

layer cloud model by simulating the mixed clouds. He found221

that the system was able to find an effective cloud amount and222

vertical location to compensate for the mixed cloud nature. It is223

interesting to highlight that he reported also that the effects of224

the effective cloud-parameter retrieval had little impact on the225

temperature and humidity profiles.226

The standard use of 1D-VAR algorithms for the inversion227

of microwave data relies on using a background covariance228

matrix. This was shown to have limitations in the case of229

cloud and rain, as their variances will inevitably be large which230

would amount to an absence of constraint [37], [38]. In this231

latter study, a physical retrieval of moisture, cloud, wind speed,232

and rain was applied to SSM/I, and a spatial smoothing was233

adopted, attributing the horizontal variability exclusively to234

cloud structures.235

In their 1996 study, Phalippou et al. introduced a 1D-VAR236

algorithm for the clear and cloudy skies for an SSM/I237

configuration and highlighted its potential for the NWP. It238

later became operational at ECMWF. The integrated amount239

of cloud liquid was made to vary as a scaling factor for the240

retained vertical structure (the output of the ECMWF cloud241

scheme was assumed). This approach cannot easily be extended242

to sounding configurations as the cloud structure severely alters243

the vertical weighting functions [21]. Moreover, the absorption244

of the cloud is also dependent, through the dielectric constant,245

on the temperature of the cloudy layer [50] which places some246

importance on the location of the cloud within the vertical247

temperature profile. An error in the temperature location is248

likely to translate into an error in the resulting liquid total249

amount. Chevallier et al. [7] demonstrated the proof of concept250

of a 1D-VAR algorithm that could be used to assimilate251

clouds data. A fast RTM was developed along with its adjoint252

operator. It was applied to the advanced TOVS data. Deblonde253

and English [8] also used a variational algorithm for the cloudy254

but nonprecipitating conditions, similar to that of [36], except255

that an alternative method was tested where the total-water- 256

content profile was retrieved and, then, split into humidity and 257

liquid using an empirical function. A higher rate of divergence 258

was reported using this approach particularly in the clear-sky 259

cases, but improved temperature retrieval performances were 260

found using this method in cloudy skies. 261

Liu and Weng [21] more recently proposed a multistep 262

variational algorithm that retrieved temperature, moisture, and 263

cloud profiles in all-weather conditions. NCEP forecasts were 264

used as background, and regression-based algorithms were used 265

to produce the first guess for temperature and humidity profiles. 266

Surface wind and pressure were also taken from the NCEP- 267

forecast data. The integrated amount of cloud liquid was found 268

to be consistent with the original value but that the profile 269

presented differences due to the limited information content. To 270

constrain the problem and make the retrieval more stable, hy- 271

drometeor profiles were modeled in an oversimplified fashion. 272

The present study could be viewed as an upgrade to the study 273

of Liu and Weng where the stability and information-content 274

issues are handled through the EOF decomposition which also 275

removed the need to have a multistep approach. 276

D. 1D-VAR + Cloud Models Approach 277

Cloud models have started recently to become part of the 278

1D-VAR schemes to force consistency between the temper- 279

ature and humidity profiles on one hand and the cloud and 280

other hydrometeor profiles on the other hand. Direct measure- 281

ments of brightness temperatures in rainy conditions started 282

being assimilated, first, at ECMWF [5] where low-frequency 283

SSM/I channels were assimilated and, then, experimentally 284

at MSC [9]. The first step in these two stage approach 285

(1D-VAR + 4DVAR) consists of a 1D-VAR algorithm that 286

incorporates moist physical schemes in its forward operator, 287

which computes the hydrometeor profiles (cloud, ice, rain, and 288

snow) from the profiles of temperature and water vapor. 289

Moreau et al. [35] developed a 1D-VAR algorithm to re- 290

trieve the rain profiles with ECMWF model outputs used to 291

produce the first guess for temperature and humidity and a 292

cloud/convective scheme used to relate them to hydrometeors. 293

However, frozen hydrometeors were excluded in their exper- 294

iment which was mitigated by the choice of low-frequency 295

channels only. 296

Moreau et al. [34] compared the performances of two 297

1D-VAR-based retrievals of temperature and humidity profiles 298

from the passive TRMM and SSM/I data measured in rainy 299

areas. The first uses classically retrieved rainfall rate as input, 300

while the second uses directly the brightness temperatures. 301

Both use, besides an RTM, simplified convective and large- 302

scale condensation parameterization. They found that problems 303

with the convergence arise when background precipitation is 304

generated through convection and not by large-scale processes. 305

Bauer et al. [3] studied the performances of the cloud re- 306

trieval using the European Global Precipitation Mission config- 307

uration. They used the ECMWF short-term forecast profile of 308

temperature and humidity for the initialization of the first guess. 309

The hydrometeor first guess and background combines the 310

temperature and humidity profiles with cloud and convective 311
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model schemes, following a similar approach implemented in312

[35]. In their study, surface emissivity and temperature were313

fixed to climatologic values and not part of the control vector.314

The temperature and water vapor were not part of the control315

vector either, as the purpose was to assess the accuracy of hy-316

drometeor retrieval only. For this reason, the forward operator317

consisted of an RTM only (no convective or cloud scheme).318

Deblonde et al. [9] incorporated the ECMWF approach into the319

Canadian 1D-VAR assimilation system of the SSM/I retrieved320

rainfall rates or brightness temperatures. The resulting inte-321

grated water-vapor amount is assimilated in a 4DVAR assim-322

ilation scheme.323

E. On the Use of Cloud and Convective Schemes in 1D-VAR324

For it to work in a 1D-VAR context, the cloud and convective325

schemes employed need to be simplified and made less nonlin-326

ear which raises the question of their accuracy. Their adjoint327

model needs also to be developed and incorporated. This can328

be computed analytically (usually, for the simplified schemes)329

or by finite difference (usually, for the full moist physical330

schemes). The RTM would need to be coupled with the cloud331

schemes, and therefore, their uncertainties need to be accounted332

for. Deblonde et al. [9] questioned the usefulness of using a333

deep-convection scheme for the assimilation of cloudy/rainy334

radiances because of its high nonlinearity. The equivalent error335

was found to have a very large spread in cases where deep336

convection dominated. The inputs also need to be simplified337

as cloud models do normally depend also on time trends of338

radiation and vertical diffusion produced by the dynamical and339

other physical processes. In the same study, it was highlighted340

that using shallow convective scheme to produce cloud water341

content in the 1D-VAR actually degraded the comparison with342

the algorithm of Weng and Grody [46]. It was further shown343

that the deep convective scheme deteriorated the fit between the344

modeled and observed brightness temperatures, which shows345

that the cloud model schemes are far from being accurate,346

and their corresponding errors need to be accounted for in347

the 1D-VAR assimilation when used, along with the RTM348

errors. Contrary to RTMs, cloud models are very different and349

produce nonsimilar results in most cases. If these differences350

and impacts of linearization and simplifications are accounted351

for, the resulting errors that a 1D-VAR must use might amount352

to not constraining the retrieval. Moreover, cloud schemes have353

been documented to be sometimes locally biased, in need of354

tuning, and are by no means accurate in their relationship355

between the temperature (T) and humidity (Q) profiles on one356

hand and the cloud (C) and hydrometeor (H) profiles on the357

other. Their use carries a set of uncertainties that would need to358

be accounted for in the error covariance matrix, which would359

defeat, at least partially, the purpose of using them as a means360

to constraint the retrieval.361

III. RETRIEVAL/ASSIMILATION SYSTEM362

A. Suggested Approach363

In this paper, we have adopted an approach that relies ex-364

clusively on the direct-impact signatures of hydrometeors on365

the brightness temperatures. The natural correlations between 366

the cloud and hydrometeor parameters are included in the sys- 367

tem, through the development of a covariance matrix that puts 368

constraints on the independence of these parameters, between 369

themselves across the layers as well as between the parameters. 370

Separate retrievals treating parameters independently cannot, 371

for obvious reasons, ensure that these retrieved parameters will 372

be consistent, all at once, with the measured radiances [37], 373

[38]. For this reason, in the approach adopted, all channels, 374

including window and sounding channels, are used simulta- 375

neously in order to retrieve all parameters together. The use 376

of sounding channels was shown to present many advantages 377

in precipitation probing, including their lesser sensitivity to 378

surface emittance and their ability to slice the cloud profile 379

vertically [3]. 380

The effects of clouds could potentially improve the tempera- 381

ture retrieval of the cloudy layer rather than degrade it, due to 382

the increased absorption in that layer and, therefore, increased 383

sensitivity. Eyre [12] argues that retrievals that remove the 384

effects of clouds in preprocessing stages only degrade the 385

retrievals. This all-channel–all-parameter approach allows an 386

optimal extraction of information from the measurements. It is 387

also beneficial to use all channels together with sensitivity to a 388

wider range of precipitation amount [1] rather than a selective 389

channel set. The retrieval of cloud and hydrometeors in a profile 390

form presents some nice features, including avoiding in carry- 391

ing the cloud top and thickness in the state vector which usually 392

presents some instability, when these values cross the vertical- 393

level boundaries. It can also provide information about the mul- 394

tilayer nature of the cloud. Frozen and liquid profiles are both 395

retrieved in profile form, which means that at any given layer, it 396

is possible that we could get a mixture of these phases. This, of 397

course, would assume that we have enough radiometric signal 398

to distinguish them without ambiguity. With this approach: 399

1) Reliance on a moist physics model to relate the temper- 400

ature and water vapor to the cloud and hydrometeor profiles 401

is avoided, which allows 2) saving time by using only the 402

RTM to project the geophysical space into the radiance space; 403

3) derivatives are all computed through the RTM adjoint, and 404

no derivation of the cloud model is needed with its addi- 405

tional cost; 4) measurement errors, which are essential for the 406

1D-VAR, need only to be estimated for the instrumental noise 407

and the RTM uncertainty. Uncertainties associated with the 408

cloud physics modeling are therefore avoided; 5) dependence of 409

the resulting retrievals on NWP-specific information (forecast) 410

and/or convection scheme is also avoided. It is recognized 411

that the cause-to-effect type of relationship between the T 412

and Q profiles on one hand and the C and H profiles on 413

the other is no longer hard coded through a cloud scheme 414

coupled with the RTM such as in the studies aforementioned. 415

These constraints are however indirectly present, although 416

loosely, through the background covariance matrix to ensure 417

consistency, the same way that the temperature layers are 418

being constrained to produce a physically realistic tempera- 419

ture profile overall without a direct scheme that relates each 420

layer temperature to the others. This mechanism can take 421

advantage of known relationships between the hydrometeor 422

formation and the nonatmospheric variables. We emphasize 423



BOUKABARA et al.: PASSIVE MICROWAVE REMOTE SENSING OF EXTREME WEATHER EVENTS 5

that the retrieved cloud and hydrometeor profiles should be424

viewed as an effective product that, radiometrically, represent425

the effects of a conglomerate of parameters that have been426

reported to have significant impacts on brightness temperatures.427

These include the following:428

1) beam-filling effect;429

2) shape of the particles and droplets;430

3) their orientation;431

4) their density;432

5) volume mixture rate of liquid and frozen matters;433

6) particle size distribution;434

7) vertical distribution of all of the above [6];435

8) 3-D cloud and rain effects or nonvalidity of plane-parallel436

assumption;437

9) differences between the air temperature and the438

frozen/liquid water phases temperatures.439

Using these effective profiles in the retrieval is a result of440

the recognition that we cannot realistically claim to be able441

to retrieve accurately so many parameters with the available442

number of channels, without too heavily relying on the external443

data. We will call this handling of precipitation parameters, for444

the purpose of retrieving temperature and humidity, a precip-445

clearing procedure, as it effectively amounts to clearing the446

effects of these precipitation parameters from the retrievals447

of temperature and moisture profiles. We emphasize that this448

precip-clearing is highly nonlinear as it accounts for the effects449

of precipitation, not at the radiance level, but by accounting for450

the hydrometeors themselves as part of the retrieved state vector451

within the retrieval iterations.452

B. Description453

The 1D-VAR system used in this paper is labeled the mi-454

crowave integrated retrieval system (MIRS). The retrieval of the455

precipitating and nonprecipitating cloud parameters is done in a456

profile form as said before, along with the temperature and hu-457

midity profiles. A 100-layer pressure grid is used ranging from458

1050 to 0.1 mbar. Layers below the surface are disabled before459

the retrieval is triggered and do not play any role. The humidity,460

cloud, and hydrometeor parameters are actually retrieved in the461

natural logarithm space. This has the advantages of 1) avoiding462

the nonphysical negative values and 2) making their probability463

density functions (pdfs) more Gaussian, which is a necessary464

mathematical condition, as will be described later. To alleviate465

the limited information content available in the instruments466

at hand, the inversion is performed in a reduced eigenvalue467

space as mentioned before, which makes the retrieval process468

stable and mathematically consistent; the number of EOFs used469

in the retrieval is less or equal to the number of channels470

available.471

C. Mathematical Basis472

The mathematical basis of MIRS is a proven and widely used473

variational approach described in [39]. We will briefly review it474

here for the purpose of showing that it is valid in precipitating475

conditions as well. We will follow the probabilistic approach as476

it will highlight the only three important assumptions made for477

this type of retrievals, namely, the local linearity of the forward 478

problem, the Gaussian nature of both the geophysical state 479

vector and the errors associated with the forward model and 480

the instrument noise, and finally, that the measurements and the 481

forward operator are nonbiased to each other. It is important to 482

keep in mind that the variational, Bayesian, optimal estimation 483

theory, and maximum probability are all the same solutions (if 484

the same assumptions are made), although reached through dif- 485

ferent paths. The following will link the probabilistic approach 486

to the variational solution which seeks to minimize a cost 487

function. Intuitively, the retrieval problem amounts in finding 488

the geophysical vector X which maximizes the probability of 489

being able to simulate the measurement vector Y m using X as 490

an input and using Y as the forward operator. This translates 491

mathematically into maximizing P (X|Y m). 492

The Bayes theorem states that the joint probability P (X,Y ) 493

could be written as 494

P (X,Y ) = P (Y |X) × P (X) = P (X|Y ) × P (Y ).

Therefore, the retrieval problem amount to maximizing 495

P (X|Y m) =
P (Y m|X) × P (X)

P (Y m)
.

X is assumed to follow a Gaussian distribution 496

P (X) = exp
[
−1

2
(X − X0)T × B−1 × (X − X0)

]

where X0 and B are the mean vector (or background) and 497

covariance matrix of X , respectively. Ideally, the probability 498

P (Y m|X) is a Dirac-Delta function with a value of zero except 499

for X . Modeling errors and instrumental noises all influence 500

this probability. For simplicity, it is assumed that the pdf of 501

P (Y m|X) is also a Gaussian function with Y (X) as the mean 502

value (i.e., the errors of modeling and instrumental noise are 503

nonbiased), which could be written as 504

P (Y m|X) = exp
[
− 1

2
(Y m − Y (X))T

× E−1 × (Y m − Y (X))
]
.

E is the measurement and/or modeling error covari- 505

ance matrix. Maximizing P (X|Y m) is a minimization of 506

−log(P (X|Y m)) which could be computed from the previous 507

equations as 508

J(X) =
[
1
2
(X − X0)T × B−1 × (X − X0)

]

+
[
1
2

(Y m − Y (X))T × E−1 × (Y m − Y (X))
]

.

J(X) is called the cost function which we want to minimize. 509

The first right term Jb represents the penalty in departing from 510

the background value (a priori information), and the second 511

right term Jr represents the penalty in departing from the 512

measurements. The solution that minimizes this two-term cost 513
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function is sometimes referred to as a constrained solution.514

The minimization of this cost function is also the basis for515

the variational analysis retrieval. In theory, one could also find516

another optimal cost function for a non-Gaussian distribution517

and nonlinear problems. It is just not as a straightforward518

problem. The solution that minimizes this cost function is easily519

found by solving for520

∂J(X)
∂X

= J
′
(X) = 0

and assuming local linearity around X , which is generally a521

valid assumption if there is no discontinuity in the forward522

operator523

Y (X0) = Y (X) + K[X0 − X].

K, in this case, is the Jacobian or derivative of Y with respect524

to X . This results into the following departure-based solution:525

(X − X0) =∆X

=
{
(B−1 + KT E−1K)−1KT E−1

}
× [Y m − Y (X0)] .

If the previous equations are ingested into an iterative loop,526

each time assuming that the forward operator is linear, we end527

up with the following solution to the cost-function minimiza-528

tion process:529

∆Xn+1 =
{(

B−1 + KT
n E−1Kn

)−1
KT

n E−1
}

× [(Y m − Y (Xn)) + Kn∆Xn]

where n is the iteration index. The previous solution could be530

rewritten in another form after matrix manipulations531

∆Xn+1 =
{

BKT
n

(
KnBKT

n + E
)−1

}

× [(Y m − Y (Xn)) + Kn∆Xn] .

The latter is more efficient as it requires the inversion of only532

one matrix. At each iteration n, we compute the new optimal533

departure from the background given the derivatives as well as534

the covariance matrices. This is an iterative-based numerical535

solution that accommodates moderately nonlinear problems536

or/and parameters with moderately non-Gaussian distributions.537

This approach to the solution is generally labeled under the gen-538

eral term of physical retrieval and is also employed in the NWP539

assimilation schemes along with the horizontal and temporal540

constraints. The whole geophysical vector is retrieved as one541

entity, including the temperature, moisture, and hydrometeor542

atmospheric profiles as well as the skin surface temperature543

and emissivity vector, ensuring a consistent solution that fits544

the radiances.545

D. Forward Model 546

This type of inversion of cloudy/rainy radiances supposes 547

the use of a forward operator that can simulate the multiple 548

scattering effects due to ice, rain, snow, graupel, and cloud 549

liquid water at all microwave frequencies and generate the cor- 550

responding Jacobians for all atmospheric and surface parame- 551

ters. The forward operator used in this paper is the community 552

RTM (CRTM) developed at the Joint Center for Satellite Data 553

Assimilation (JCSDA) [47]. CRTM produces radiances as well 554

as Jacobi, for all geophysical parameters. It is valid in clear, 555

cloudy, and precipitating conditions. Derivatives are computed 556

using K-matrix developed by tangent linear and adjoint ap- 557

proaches. This is ideal for retrieval and assimilation purposes. 558

The different components of CRTM briefly are the optical-path- 559

transmittance (OPTRAN) fast atmospheric absorption model 560

[29], the NESDIS microwave emissivity model [20], and the 561

advanced doubling adding radiative transfer solution for the 562

multiple-scattering modeling [22]. 563

E. Covariance Matrix and Background 564

The covariance matrix plays an important role in variational 565

algorithms. Lopez [23] estimated an error covariance matrix 566

of cloud and rain from the French global model ARPEGE. 567

Chevallier et al. [7] simply defined an empirical covariance 568

matrix of clouds with large errors. Moreau et al. [35] used 569

the regular covariance matrix of temperature and humidity 570

which they convolved with moist convection and large-scale 571

condensation schemes to produce an ensemble of rain water 572

and cloud profiles. This covariance was computed for each 573

grid point. In this paper, the part of the covariance matrix B 574

related to temperature and humidity is based on a set of globally 575

distributed radiosondes (known as the NOAA-88 set) contain- 576

ing more than 8000 individual profiles, mostly over islands. 577

The impact of using a different covariance has not been tested, 578

but we expect that a more representative dataset could improve 579

the retrieval performances. The exact formula used to compute 580

these covariances is given as 581

σ2
ij =

1
N

N∑
i=1

N∑
j=1

(xi − xi) × (xj − xj)

where σij is one of the elements of the matrix corresponding to 582

row i and column j. N is the number of profiles used, and x is 583

the average value along the row or along the column. 584

The part related to the cloud parameters is, for practical 585

reasons, also built independently offline. These statistics are 586

generated from a multitude runs (three time-consecutive fields) 587

based on the fifth generation mesoscale model (MM5) simu- 588

lations, corresponding to hurricane Bonnie (1998), with 4-km 589

resolution and 23 vertical levels, which are extrapolated to the 590

internal pressure grid of MIRS (100 layers). 591

The ability of these runs to represent the hydrometeors’ 592

global variability is not fully established, but this is believed 593

to be accurate enough for the case of hurricanes and tropical 594

storms. Impact studies (not shown) were also performed and 595

showed that the system is able to reach convergence (therefore, 596
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a radiometric solution) in many conditions that are independent597

from the set that was used to generate these covariances. Given598

the high dimensionality of the covariance matrix, it is techni-599

cally not feasible to include the actual values of this matrix600

in this paper. The matrix file is however readily available to601

interested parties. The background is coming from the same602

climatology used for building the covariance matrix, not from603

the NWP forecasts. Because the climatology we used is neither604

geographically nor time varying, the background fields are sim-605

ply a mean value computed from a set of NOAA radiosondes in606

the case of the nonprecipitating parameters and from a number607

of MM5 runs for the precipitating parameters. These average608

background values are used everywhere, which means that the609

background field (to use data-assimilation terminology) is a610

constant field with only one value: the mean climatic value.611

F. EOF Decomposition612

The retrieval in MIRS is performed in EOF space through613

projections back and forth, at each iteration, between the614

original geophysical space and the reduced space. This method615

has been routinely used in operational centers as a standard616

transform approach of control variables [24]. It has also been617

used in the context of retrieval of trace gases, sounding, and618

surface properties [20], [33], [43], [49]. Applying it in the619

context of our 1D-VAR retrieval is therefore not very original620

except may be for its extension to cloud and precipitation621

profiles which is, to our knowledge, new. Only a limited number622

of eigenvectors/eigenvalues are kept in this reduced space. The623

selection of how many EOFs to use for each parameter is some-624

how subjective but depends on the number of channels available625

that are sensitive to that parameter. Other approaches exist626

such as in [36], which suggested an objective way of choosing627

which parameters will be included in the control parameters,628

using the ratio between the background covariance matrix629

and the a posteriori covariance (ratio of diagonal elements).630

This ratio, however, depends on the Jacobian which is only631

known at the end of the iterative process, unless the problem632

is purely linear (not the case when cloud and precipitation as633

well as the high-frequency channels are involved). Advantages634

of performing the retrieval in EOF space are the following:635

1) handling the strong natural correlations that sometimes636

exist between parameters which usually create a potential for637

instability (or oscillation) in the retrieval process (small pivot),638

which is reduced significantly by performing the retrieval in639

an orthogonal space and 2) time saving by manipulating and640

inverting smaller matrices. The projection in EOF space is641

performed by diagonalizing the a priori covariance matrix642

B × L = L × Θ

where L is the eigenvector matrix, which is also called the643

transformation matrix, and Θ is the eigenvalue diagonal matrix644

which contains the independent pieces of information.645

The retrieval could therefore be performed using the646

original matrices B, ∆X , Kn as stated before (retrieval647

in original space), or, alternatively, it could be done using the648

matrices/vectors Θ, ∆X , Kn (retrieval in reduced space). The649

transformations back and forth between the two spaces are done650

using the transformation matrix L. It is important to note that, at 651

this level, no errors are introduced in these transformations. It is 652

merely a matrix manipulation. However, the advantage of using 653

the EOF space is that the diagonalized covariance matrix and its 654

corresponding transformation matrix could be truncated to keep 655

only the most informative eigenvalues/eigenvectors. By doing 656

so, we are bound to retrieve only the most significant features 657

of the profile and leaving out the fine structures. How much 658

truncation depends on how much information the channels 659

contain. In the AMSU configuration, six EOFs are used for tem- 660

perature, four for humidity and surface emissivity, one for skin 661

temperature, one for nonprecipitating cloud, and two for both 662

rain and frozen precipitation (a total of 20). 663

G. Convergence Criterion and Other Important Details 664

Several criteria have been reported for deciding on the con- 665

vergence of variational methods, among which are the follow- 666

ing: 1) testing that the increment of the parameter values at 667

a given iteration is less than a certain threshold (usually, a 668

fraction of the associated error of that particular parameter); or 669

2) testing that the cost-function J(X) decrease is less than a 670

preset threshold; or 3) checking that the obtained geophysical 671

vector X at a given iteration produces radiances that fit the 672

measurements within the noise level impacting the radiances. 673

We have chosen the last criterion as it maximizes the radiance 674

signal extraction. A convergence criterion based on J(X), 675

while mathematically correct, would produce an output that 676

carries more ties to the background and, therefore, would be 677

more inclined to present artifacts due to it. The convergence 678

criterion adopted is when 679

ϕ2 =
⌊
(Y m − Y (X))T × E−1 × (Y m − Y (X))

⌋
≤ N

where N is the number of channels used for the retrieval 680

process. This mathematically means that the convergence is 681

declared reached if the residuals between the measurements and 682

the simulations at any given iteration are less or equal than one 683

standard deviation of the noise that is assumed in the radiances. 684

Note that fitting the radiances within the noise level is neces- 685

sary but not a sufficient condition. We should note here that the 686

convergence criteria do not alter the balance of weights given 687

to the radiances (or to the background) in the cost function that 688

the 1D-VAR minimizes. 689

The evolution of the humidity profile is monitored for super- 690

saturation in the iterative process. A maximum of 130% relative 691

humidity is allowed. Currently, it is set in an ad hoc fashion 692

at each step. This has the potential to steer nonlinearly the 693

convergence from its mathematical path and should, in general, 694

be avoided, but our experience has shown that this has not 695

increased the divergence rate in a significant way. 696

H. Rationale for Precip-Clearing 697

By precip-clearing, we mean the inclusion of cloud and 698

hydrometeor profiles in the retrieval state vector, not so much 699

for the sake of their retrieval (whose accuracy is hindered by 700

the significant null space as mentioned before) but to account 701
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for all their effects on the radiances, as well as to account for702

the effects of those related parameters that are not varied in703

the retrieval process and instead assumed constant inside the704

radiative transfer operator. This allows a more accurate retrieval705

of the other parameters, namely, the temperature and humidity706

profiles and the surface parameters. This is driven essentially707

by the limited number of channels available or, mathemati-708

cally speaking, the limited number of EOFs affordable, which709

translates into a lack of sensitivity to fine vertical structures.710

The integrated values of the cloud and hydrometeor parameters711

(roughly represented by one or two EOFs) are however deemed712

accurate from simulation runs.713

IV. INSTRUMENTAL CONFIGURATION714

In this paper, we will focus on the imaging/sounding chan-715

nels of the NOAA-18 microwave sensors AMSU and MHS.716

This platform was launched on May 21, 2005. The main717

purpose of the microwave sensors is the atmospheric sounding718

of temperature and moisture, but other products are being719

produced routinely that include the rain rate, ice water path,720

land surface temperature and emissivity, cloud liquid amount,721

and total precipitable water [13], [21]. AMSU has two modules722

(A-1 and A-2) with channels operating at centimeter and mil-723

limeter wavelengths corresponding to frequencies ranging from724

23.8 to 89 GHz and thirty scan positions per scanline. MHS on725

the other hand probes at millimetric frequencies between 89 and726

183 GHz with a higher spatial resolution (90 scan positions per727

scanline). AMSU and MHS channels are unpolarized at nadir728

and mix-polarized off-nadir. Both sensors have a cross-track729

swath, scanning angles between nadir and 48.33◦, correspond-730

ing to zenith angles reaching 58◦.731

V. ASSESSMENT OF THE PERFORMANCES IN SIMULATION732

This section deals with the simulation results aimed at as-733

sessing the performances of the retrieval system in clear and734

cloudy/rainy conditions. This assessment is hard to do using735

the real data due to the lack of certainty about the true measure736

of the geophysical state. Because the system is applied in all737

conditions, we want first to assess its performances in the clear-738

sky conditions. We, then, want to know what is the advantage739

(if any) of using a multiple-scattering model rather than a740

pure absorption model. These questions will be answered in741

the following two subsections for an individual profile. The742

AMSU/MHS configuration is used. The radiances are first sim-743

ulated using the forward model described in Section III-D, then744

the retrieval is applied after randomly impacting the radiances745

by a Gaussian noise whose standard deviation corresponds to746

the advertised NedT of the respective channels. These values747

were found to be consistent with those computed from the748

real data using the methodology of Mo [32]. In both cases,749

the simulated radiances were performed with a nadir-looking750

configuration. The background data used for these simulated751

retrievals are the same as used previously in Section III-E.752

A. Assessment in Nonprecipitating Conditions753

Fig. 1 shows the evolution of the retrieved parameters during754

the iterative process for a single profile where neither cloud755

Fig. 1. Evolution of a sample of the retrieved state vector during the iterative
process for an individual profile. The parameters monitored are (from top to
bottom) the convergence metric, the vertically integrated cloud amount, the
rain water path, the graupel-size ice amount, the skin temperature, the total
precipitable water, the atmospheric temperature in layer corresponding to a
pressure of 865 mbar, and, finally, the water-vapor mixing ratio in the same
layer. The solid line is the retrieved quantity, the dashed line represents the
truth, and the dotted-dashed line corresponds to the first guess and background
values.

nor precipitation was included. It shows that the retrieved pa- 756

rameters are all reaching the true value within three iterations. 757

The convergence metric is plotted in the top panel, showing 758

that the measurements were fitted within the noise level. The 759

first guess for the cloud and hydrometeors was chosen to be 760

nonzero, and the values reached in the final iteration were all 761

zero, as expected. This gives us confidence that the system will 762

produce cloud-free retrievals when applied to the truly clear- 763

sky cases. Even if this is shown for one particular profile only, it 764

was tested under other configurations, and similar results were 765

obtained (not shown here). 766

B. Assessment in Precipitating Conditions 767

Figs. 2 and 3 show the retrieval of one cloudy and rainy 768

profile from an MM5 output run using two approaches. The 769

radiances have been fully impacted by the extinction (absorp- 770

tion and scattering) effect of cloud, rain, and ice droplets during 771

the forward simulation. The first approach (Fig. 2) consisted 772
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Fig. 2. Evolution, iteration-by-iteration of (from top to bottom) convergence metric, vertical profiles of temperature, moisture, and cloud amount. This is a
cloudy/rainy sky (dashed lines represent true values), and the retrieval (represented by solid lines) was made assuming a purely absorbing RTM (multiple scattering
turned off). Dotted-dashed lines represent the first guess and background.

of assuming that only absorption is happening; therefore, only773

temperature, moisture, and nonprecipitating cloud amount are774

retrieved, and the multiple scattering is turned off in the forward775

operator of the 1D-VAR. The major effect this has on the776

retrieval is the significant amount of supersaturation that the777

water vapor is experiencing to compensate for the effect of778

scattering, up to 200% relative humidity. This phenomenon779

is consistent with the previous studies that actually took ad-780

vantage of this feature to estimate the amount of ice in the781

profile by looking at the water-vapor profile [19]. Note that782

this particular profile has perfectly converged within four it-783

erations. The same radiances are inverted in Fig. 3, but, this784

time, by turning the scattering on, the rain and the graupel-785

size ice are both retrieved simultaneously with temperature,786

moisture, and cloud liquid amount. We notice that the water-787

vapor supersaturation is much reduced. There is a sort of precip-788

clearing of the radiances that allows a better retrieval of the789

moisture profile. The temperature profile is not much altered.790

The apparent discontinuity in the original temperature profile791

is because it is a combination of an MM5-produced profile792

up to 100 mbar (so that temperature, cloud, and hydrometeors793

are consistent) and climatology above that level. Despite the794

nonphysical transition of the original temperature profile at795

100 mbar, which is simulated in the radiances, the retrieval is796

able to accommodate to a certain extent, given the shape of the 797

background that constrains its departures. This is an example of 798

how the variational technique is balancing a priori information 799

and radiance-provided information. We also notice the degree 800

of nullspace; the hydrometeors are not reaching the true values, 801

and yet, the retrieval has converged within three iterations. This 802

demonstrates that with the degrees of freedom at hand, one 803

needs more independent radiances to constrain the problem. As 804

a reminder, our primary goal here is to sound temperature and 805

moisture in the cloudy/precipitating conditions, not so much the 806

sounding of hydrometeors themselves. The integrated amounts, 807

however, are expected to be reasonably accurate. 808

VI. VALIDATION USING GPS-DROPSONDES 809

Microwave imaging and sounding data from the NOAA-18 810

satellite were used to validate the retrieval system described 811

previously in both clear cases as well as under extreme weather 812

conditions, in the eye and within the eyewall of hurricane 813

Dennis in the summer of 2005. This was done by compar- 814

ing the retrievals of temperature and humidity profiles to the 815

measurements made by GPS-dropsondes. Before the retrieval 816

is performed, the brightness temperatures of the two sensors 817

are collocated and corrected of any bias when compared to 818
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Fig. 3. Same as Fig. 2, except that the vertical profiles of rain and graupel-size ice are added. This is a cloudy/rainy sky (dashed lines represent true values), and
the retrieval (represented by solid lines) was made with the full RTM where multiple-scattering effects are accounted for. The supersaturation of water vapor is
much reduced compared to Fig. 2. The apparent discontinuity in the original temperature profiles is caused by their combination of the MM5-produced profiles
up to 100 mbar and climatology above that level.

the forward-model simulations. The collocation is done in two819

different ways: 1) An averaging is performed of 3 × 3 MHS820

footprints to fit the AMSU spatial coverage (low resolution)821

or 2) assume the AMSU footprint valid within all the subpixel822

MHS footprints (high resolution). In this latter case, the sub-823

pixel heterogeneity is computed from the MHS footprints and824

translated into the AMSU channels but only for those that are 825

sensitive to the same geophysical parameters, namely, channels 826

23.8, 31.4, 50.3, and 89 GHz. The bias removal is performed 827

by simulating the brightness temperatures over ocean using 828

the NCEP Global Data Assimilation System (GDAS) analyses 829

as inputs. These biases were found to be scan dependent. 830
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The instrumental/modeling error covariance matrix E is also831

built partly during this process by using the variances of the832

same comparisons. These variances are subjectively scaled833

down to account for the uncertainties in the GDAS inputs834

and collocation errors. The diagonal elements (in standard835

deviation, in Kelvin) of the modeling error matrix E for the836

AMSU+MHS channels (from #1 to #20) are the following: 1.9,837

1.7, 1.2, 0.6, 0.3, 0.2, 0.3, 0.4, 0.4, 0.3, 0.8, 0.0, 0.0, 0.0, 2.1,838

2.2, 1.4, 1.6, 1.3, and 1.1. Channels 12, 13, and 14 peak above839

the maximum altitude reported by GDAS, so the comparison840

to GDAS simulation is not terribly meaningful, therefore, the841

variances for these channels were deemed unreliable, and the842

channels were disabled. These modeling errors are used on top843

of the instrumental errors (NEDT values) which are computed844

exclusively from the raw AMSU/MHS Level-1B data, which845

are available from NOAA using the approach of [32]. For win-846

dow channels, modeling errors are dominant over instrumental847

errors. These values are slightly lower than those found in848

the previous studies [9], [36]. They allow, however, a stable849

convergence in most cases. Note that these modeling errors850

are computed over ocean in the clear-sky conditions. The same851

values are used over the cloudy/rainy conditions.852

A. Dropsondes Data853

It is critical that one gets a clear sense of how accurate the854

so-considered truth measurements are before interpreting any855

differences between them and the retrievals. In our case, mea-856

surements are made in the cloudy/rainy conditions (typically,857

during hurricanes and tropical storms) by high-velocity de-858

scending GPS-dropsondes. They were obtained from the Hur-859

ricane Research Division (HRD), Miami, FL, where they were860

quality-controlled using the Hurricane Analysis and Processing861

System. They operate at altitudes up to 24 km with a descent862

time of about 12 min. The measurements are made every half863

second which allows a high vertical resolution. Along with864

the temperature and moisture, the vertical wind-speed profile865

is also measured by using the GPS-based Doppler signal,866

which is down to 4–10 m above the surface. The validation of867

these dropsondes was assessed by a comparison with standard868

radiosondes, radars, buoys as well as by a human visualization869

of clouds for the saturation check. For a full description of these870

measurements, see [16]. In their study, the inherent accuracy of871

the temperature measurement was assessed to be 0.2 ◦C, but a872

lag error correction exceeding 1 ◦C was applied for layers above873

500 mbar. The humidity accuracy was assessed to be less than874

5%, but up to 15% dry bias correction was sometimes applied875

(S. Feuer, personal communication, 2006). As for the wind, an876

accuracy of 0.5–2 m/s was estimated.877

B. Limitations of the Validation in Extreme Weather Events878

Traditional approach in validating the retrievals by statis-879

tical comparison with ground-truth data collected around the880

measurement’s time/space location is not optimal in the case881

of hurricane conditions. The main reason is the fast-moving882

features involved. A category 2 storm, for instance, has an883

average forward speed of 30 mi/h (or 48 km/h), therefore, even884

Fig. 4. Impact of shifting the field of brightness temperature by three scanlines
(here 89-GHz channel) that is measured during July 2005 hurricane Dennis to
simulate the effect of collocation errors in time and space. The map represents
the difference of the two fields (shifted and nonshifted). In the scatterplot, the
colors are modulated by the heterogeneity of the original TBs field. The darker
the dot is, the smoother is the area around the measurement. Areas where the
field is very heterogeneous, (green-red dots on lower panel), have differences
exceeding 30 K.

if the storm features are all the same, a displacement caused 885

by a collocation criterion of 2 h would cause a 90-km shift 886

(∼6 scanlines of MHS). For illustration, Fig. 4 shows the effect 887

of a modest shift of three scanlines on a field of brightness 888

temperatures, assuming the geometry of the depicted storm did 889

not change between the shifted and the nonshifted fields. The 890

differences between the shifted and nonshifted fields reach very 891

high values that could make the comparison meaningless. 892

In reality, it is even worse: storm intensifies, fades down, 893

hydrometeor structures change, particles form/fall, the shift is 894

multidirectional, etc. Collocation errors are therefore expected 895

to be dominant in very active areas. Very strict criteria must 896

therefore be used for the validation of hydrometeor retrieval 897
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Fig. 5. Intravariability of dropsonde measurements in terms of temperature
and moisture profiles, which are made within an average of 10 min from each
other and within a radius of 10 km. Note that the descent time is roughly
12 min.

given their highly changing nature. Additionally, atmospheric898

temperature in the rain and cloud might be different from899

the air temperature. Sinkevich and Lawson [41] performed an900

assessment of the accuracy of temperature measurements in901

convective clouds and reported that temperature-excess amount902

between in-cloud and out-of-cloud areas depends on the stage903

of the life of the cloud and varied between 0.2 ◦C and up to904

8 ◦C over ocean. Over land, an even greater temperature excess905

was noticed. For all these reasons, there is a need to have an906

almost perfect collocation in these active conditions, in order907

for the comparison to be meaningful. Stringent time and space908

criteria must therefore be used, which obviously dramatically909

reduces the total number of coincident collocations. This, in910

turn, renders the empirical assessment statistically meaningless911

at best or practically unfeasible at worst. Note that the tight912

time and space collocation must be between coincident satel-913

lite measurements, hurricane events, and ground truth such as914

dropsondes.915

Fig. 6. Field of 157-GHz brightness temperatures taken during hurricane
Dennis on (top) July 6, 2005 and (bottom) July 8, 2005. Overlaid are the circles
centered around the location where the GPS-dropwindsonde was launched
from the aircraft. The horizontal color bar refers to the brightness-temperature
value. The vertical color bar represents the difference between the satellite-
measurement time and the sonde launch time. Collocations highlighted in the
upper and lower panels will serve as the validation in clear and precipitating
conditions, respectively.

Fig. 5 shows the measurements of four dropsondes that 916

were launched within the core of the hurricane (within and 917

around the eye) with an average of 10-min interval and within 918

10 km distance. Differences in temperature up to 4 K and 919

in moisture mixing ratio of up to 4 g/kg are noticed. These 920

differences are inherent to collocation–coregistration. Although 921

this is an almost perfect collocation between the dropsondes 922

themselves (no retrieval involved), because the hurricane active 923

features are moving fast, even a few minute interval and a few 924

kilometer distance can make the sensor (in this case, the ground 925

measurement) see a different signal. The descent time is by 926

itself a limiting factor. By the time the dropsonde descends, it 927

might be sampling the different parts of vertical profiles that are 928

significantly different. The verticality of the retrieved and the 929

ground-measured profiles is also an issue and adds to the overall 930

uncertainty. The dropsonde presents the potential of drifting, 931

while the retrieved profile’s verticality depends on the viewing 932

angle of the measurements where it was extracted from. If these 933

latter are nadir viewing, then the retrieved profile is vertical. If, 934

however, the channels are off-nadir viewing, then the retrieved 935

profiles are slant. This clearly puts an upper limit to the expec- 936

tations that one can have when comparing the retrievals with 937
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Fig. 7. Individual comparisons between dropsondes, MIRS retrievals, and GDAS. Note that all three have different pressure grids and different cloud tops. The
four dropsondes represented have different time differences. The collocations are outside the inner core of the hurricane, as shown in Fig. 6 (upper panel).

the dropsonde measurements. Another type of limitation that938

one should be aware of is what other studies called representa-939

tiveness error which relates to the fact that dropsonde measure-940

ments are point measurement and do not necessarily represent941

what the sensor is measuring within the field of view. This latter942

is around 15 km for MHS, at nadir, but more than 45 km wide at943

certain off-nadir viewing positions. Unfortunately, the number944

of dropsondes collocated with satellite measurements is limited,945

and therefore, the luxury of averaging within the footprint to946

mitigate the representativeness errors (or around the time of the947

measurement) cannot be afforded.948

C. Case-by-Case Validation949

Given the limitations discussed previously, and for the pur-950

pose of the validation, it was critical to find the as-perfect–as-951

possible collocation between the satellite measurements and the952

GPS-dropsondes. We focused on the hurricane Dennis which 953

occurred on July 2005. Fig. 6 shows two days of that hurricane 954

timeframe, July 6 and 8. The field of 157-GHz MHS brightness 955

temperature is shown because of its sensitivity to cloud, rain, 956

and ice. The dropsonde launch location is also highlighted by 957

circles. The color of those circles indicates how far (red) or how 958

close (dark) in time they are from when the closest satellite 959

measurement was taken. The upper panel contains a number 960

of decent dropsonde/satellite collocations (in space and time) 961

that appear free of any impact of rain or ice (seems to be 962

the same signal as the surface background). These will serve 963

for the validation of our retrievals in a clear-sky condition. 964

The lower panel on the other hand presents some interesting 965

cases of dropsondes in the eye and within the eyewall of the 966

hurricane (see close-up figure) that are very close in time to the 967

satellite measurements. These will serve for the validation of 968

the retrievals in the extreme conditions. 969



14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 8. Same as the previous figure, except that the water-vapor retrievals are represented. Retrievals were performed at the higher spatial resolution (MHS).
Differences are higher when the retrieval is done at the lower resolution (not shown). No NWP external data were used for these retrievals.

D. Clear-Sky Conditions970

Figs. 7 and 8 show four individual dropsondes that were971

identified above as clear sky along with the MIRS retrievals972

and the GDAS analysis (included for reference). They corre-973

spond to temperature and water vapor, respectively. The time974

difference is highlighted in the different panels. For temper-975

ature, errors are typically less than 1 K with a maximum976

of 3 K in the low altitudes. Note that the retrieval goes up977

to 0.1 mbar, while the dropsonde for this particular aircraft978

goes only to 200 mbar and GDAS to 20 mbar. The rela-979

tively large differences in the lower altitude might signal that980

the brightness temperatures for the low-peaking and window981

channels have some local residual bias that is hard to remove982

using the global approach we used. The water-vapor compar-983

isons show a rather good agreement between the dropsonde984

measurements and the retrievals, except for the fine struc-985

tures that the dropsonde is able to report while the retrieval 986

is not detecting. This is not surprising given the vertically 987

broad weighting functions of the 183-GHz channels and the 988

horizontal size of the radiometric pixel which covers a much 989

wider area than that of the point measurements. The latter 990

are sensitive to subpixel horizontal variability. It is interesting 991

also to note that, as one might expect, differences between 992

the retrieval and dropsonde measurements tend to increase 993

with larger time differences (displayed in the squares inside 994

the plots). These retrievals were performed using the high- 995

resolution footprint matching described earlier. Tests were done 996

to see the impact of performing the retrievals in low resolution 997

and were found higher due to the larger representativeness error. 998

Note that in a relative sense, the differences are within the 999

10%–30% margin in the vertical region between the surface and 1000

500 mbar. 1001
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Fig. 9. Retrieval of graupel-size ice content using MIRS. Note that the
output of MIRS is an actual profile. The figure above represents the vertical
integration (which is performed in the postprocessing stage). Hurricane Dennis
2005 passing through the Cuba Island. Retrievals are done at MHS resolution
(roughly 20 km).

E. Hurricane Conditions1002

Fig. 9 shows the vertically integrated graupel-size ice amount1003

[Graupel-size ice water path (GWP)] computed from the1004

retrieved profile. This is shown as a qualitative validation.1005

Although the retrieval is done in profile form, the resulting1006

integrated value displays physically plausible features and val-1007

ues. The retrieval corresponds to the same Dennis hurricane1008

on July 8, 2005 (same descending orbit shown before). First,1009

where no activity is present (from the 157-GHz brightness1010

temperatures (TBs), the retrieval is reporting no ice or rain,1011

even if the first guess used is actually a nonzero profile (the1012

same used everywhere). This confirms the conclusion reached1013

in a simulation setting (see Section V) that the system is able1014

to produce zero amounts when the signal in the TBs indicates1015

so, even when starting from the nonzero first guesses. Second,1016

the large values of GWP are concentrated in the middle of the1017

active area and decreasing gradually at the edges. One can even1018

see that, in what seems to be the eye of the hurricane, the value1019

of the integrated ice amount is actually very small compared to1020

the surrounding pixels.1021

Figs. 10 and 11 show the comparison of MIRS retrievals1022

to a few selected sondes that were dropped within the eye1023

and eyewall of the hurricane. The ones closest in time and1024

space were selected (highlighted in Fig. 6, bottom). GDAS1025

is also represented for reference. These figures correspond to1026

temperature and moisture, respectively. Both time difference1027

and distance between the space-based measurement and the1028

dropsonde are shown on the plots. Note that the vertical extent1029

goes to 700 mbar only for this particular aircraft that dropped1030

the sondes. GDAS and MIRS are still reporting retrievals up1031

to 20 and 0.1 mbar. It is found that these comparisons show a1032

rather good agreement between MIRS and the dropsondes, at1033

least for temperature. The differences are indeed well within1034

the intravariability of the sonde measurements themselves de-1035

scribed previously. On top of the intravariability and the rep- 1036

resentativeness issues reported before, the vertical descent of 1037

the sonde seems to tend to drift horizontally more drastically 1038

within very active regions (see the blue curves on the figures). 1039

In contrast, the descent is almost vertical in clear-sky cases. 1040

Therefore, although the reported distance at launch location 1041

is reported to be 2.6 km for the first sonde for instance, we 1042

can see that when reaching the surface, the distance became 1043

around 10 km. Again, in fast-moving features like hurricanes, 1044

this factor could make a significant difference. For the closest 1045

collocation (less than 12 min and less than 3 km in distance), the 1046

difference in water vapor is actually also within the previously 1047

reported intravariability. When time and distance differences 1048

are larger, the moisture differences are larger. But, the er- 1049

rors of representativeness and the vertical drift of the sonde 1050

could at least, in part, explain the remaining differences. It is 1051

worth mentioning that NCEP GDAS does ingest the dropsonde 1052

measurements themselves within its assimilation cycle but not 1053

the rain-impacted AMSU/MHS radiances. It is interesting to 1054

notice in this case that GDAS analyses are exhibiting similar 1055

differences with the dropsondes than the MIRS retrieval does, 1056

although this latter is based solely on microwave radiances 1057

measured from AMSU and MHS. 1058

VII. CONCLUSION 1059

We have used cloud- and rain-impacted brightness temper- 1060

atures in a variational retrieval, using NOAA-18 AMSU and 1061

MHS sensors. This was made possible owing to the CRTM 1062

forward model, which produces both radiances in all-weather 1063

conditions and the corresponding Jacobi for all parameters, 1064

including the cloud and hydrometeor parameters. The CRTM 1065

is incorporated into a microwave-dedicated retrieval system 1066

at NOAA/NESDIS, which is called the MIRS. The MIRS 1067

methodology described here is based on treating, in a consistent 1068

fashion, all parameters that do impact the measurements. It is 1069

also independent from the NWP-related information. The ill- 1070

posed nature of the inversion is handled through the use of the 1071

eigenvalue decomposition technique which makes the inversion 1072

very stable, and a high convergence rate is obtained. It was 1073

shown, in an ideal simulation case, that the null space is a 1074

limiting factor. This translates into cases where the retrieval 1075

process reaches a solution that satisfies the measurements, but 1076

that is different from the original in terms of hydrometeor and 1077

cloud profiles. Because of this and the limited information 1078

content of the radiances, the aim of this retrieval was essentially 1079

to target the temperature and moisture profiles as well as the 1080

surface parameters in very active regions. The hydrometeor 1081

vertical amount profiles help account for the effects they and 1082

the other parameters not accounted for explicitly, produce 1083

on the measurements (precip-clearing). Improvement in the 1084

cloud and hydrometeor profiling is however expected, if tem- 1085

perature and moisture profiles are provided externally from 1086

accurate NWP forecasts for instance. Designing the retrieval 1087

of cloud and hydrometeors in profile form presents a number 1088

of advantages, including the avoidance to account explicitly 1089

for the cloud top pressure and the cloud thickness, which 1090

could, in certain cases, cause instability or oscillation. The 1091
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Fig. 10. Case-by-case comparison of temperature profile between 700 mbar and the surface, between (green line) MIRS retrievals, (red line) GDAS analyses,
and (black line with fine vertical structures) GPS-dropsonde measurements. The blue line on the left represents the profile of the dropsonde distance drift with
respect to the location of the closest satellite measurement. The collocations are within the inner core of the hurricane, as shown in Fig. 6 (lower panel).

designed system could also, in theory, give information about1092

the multilayer nature of the clouds and mixture of phases within1093

the cloud/precipitating layers, provided that enough informa-1094

tion in the radiances exists. The retrieval system is used in1095

clear, cloudy, and precipitating conditions. It was shown in1096

simulation and confirmed with the real data that the perfor-1097

mances, when applied to clear skies, are not degraded and that1098

the retrieval algorithm is able to reach a zero-amount solution1099

for all the cloud and hydrometeor parameters if the radiances1100

indicate so.1101

A validation was undertaken in both clear and extremely1102

active conditions by a controlled comparison to measurements1103

by the aircraft GPS-dropsondes, which are taken in the vicinity1104

of hurricane Dennis. We first showed that extreme care must be1105

exercised when attempting validation in these weather events,1106

as very contrasted atmospheric features are moving fast, and1107

therefore, any collocation error in space and/or time could have1108

enormous impact on the comparison between the retrievals 1109

and the ground-truth data. The collocation error, which is 1110

coupled with the inherent descent time of the dropsondes, thus 1111

sampling different parts of separate vertical profiles, would, in 1112

fact, be the dominant source of error. This led us to use very 1113

strict collocation criteria which, in turn, advocated doing the 1114

validation by individual comparisons rather than by computing 1115

statistical metrics. Another obvious major source of error is the 1116

representativeness error. If the same sensor is looking at differ- 1117

ent pieces of the atmosphere and this latter is very contrasted 1118

with moisture, rain, cloud, falling frozen precipitation, etc., the 1119

measurements could be very different. These differences are not 1120

due to any retrieval or calibration issues, but simply to inherent 1121

to 4-D variations of the atmosphere within the timeframe of 1122

the measurements and within the area sampled by these point 1123

measurements. Intravariability of the dropsondes themselves 1124

was assessed using four individual sondes dropped within 1125
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Fig. 11. Same as Fig. 10 except for the water-vapor profile.

10 min and a few kilometers from each other, which gave us1126

an estimate of the lower limit of the differences that we must1127

expect when validating the results.1128

We also hinted to the importance of the spatial resolution of1129

the measurements which plays a key role in these active areas.1130

To stabilize the sensor gain, the microwave radiometric mea-1131

surements need to be averaged within an integration time period1132

to reduce the noise level (NedT). This has the effect of reducing1133

the horizontal spatial resolution. It is however acknowledged1134

that this instrument noise is actually buried under other sources1135

of errors such as the modeling error. It is therefore preferable1136

from an assimilation or retrieval stand to have at least, in remote1137

sensing of highly contrasted events (such as hurricanes and1138

coastal boundaries), a higher horizontal spatial resolution with1139

a higher noise rather than a lower spatial resolution with a1140

reduced noise.1141

For the comparison between the MIRS retrieval and the1142

dropsondes, we focused on two days of hurricane Dennis, corre-1143

sponding to July 6 and 8, 2005. Results in the clear sky showed1144

that the differences in temperature and water vapor were mini-1145

mal. The finer vertical structures measured with the dropsondes1146

are, for obvious reasons, not expected to be picked by the re-1147

trieval given the broad weighting functions of the sounders. The1148

performances in the eye and the eye wall of the hurricane were 1149

shown to be largely within the intravariability of the reference 1150

measurements. These performances were comparable to those 1151

of GDAS analyses that ingested the dropsondes themselves. 1152

The MIRS-retrieved temperature and moisture profiles and the 1153

emissivity parameters, in active areas, are expected to produce 1154

positive impacts in the subsequent 4DVAR assimilations, the 1155

object of a future study. We, indeed, envision that our 1D- 1156

VAR, which considers the hydrometeor parameters as part of 1157

the retrieved vector instead of hooking it with a cloud model, 1158

could be ported into an assimilation system and used in the first 1159

part of a 1D-VAR+4DVAR assimilation process. 1160
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